Spaces:
Running
on
Zero
Running
on
Zero
File size: 55,284 Bytes
962587f 2226df1 962587f 2226df1 962587f e2bdea8 962587f 10a9d50 9f748cc 962587f 10a9d50 962587f 083857c 962587f 10a9d50 962587f 1d13075 962587f 10a9d50 962587f 80f9272 10a9d50 962587f 80f9272 962587f 40ae154 962587f f41caa4 2226df1 083857c 962587f 083857c 962587f e2bdea8 962587f 2226df1 083857c 2226df1 962587f 083857c 962587f 1d13075 962587f 083857c 962587f 083857c 962587f e2bdea8 962587f e2bdea8 962587f 4300c43 e2bdea8 962587f f41caa4 083857c 962587f 083857c 962587f e2bdea8 962587f e2bdea8 962587f e2bdea8 962587f e2bdea8 962587f e2bdea8 962587f e2bdea8 962587f e2bdea8 962587f e2bdea8 962587f e2bdea8 962587f 2226df1 962587f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
import spaces
import gradio as gr
import numpy as np
# DiffuseCraft
from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers, save_image_history,
get_vaes, enable_diffusers_model_detail, extract_exif_data, process_upscale, UPSCALER_KEYS, FACE_RESTORATION_MODELS,
preset_quality, preset_styles, process_style_prompt, get_all_lora_tupled_list, update_loras, apply_lora_prompt,
download_my_lora, search_civitai_lora, update_civitai_selection, select_civitai_lora, search_civitai_lora_json,
get_t2i_model_info, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL,
SCHEDULE_TYPE_OPTIONS, SCHEDULE_PREDICTION_TYPE_OPTIONS, preprocessor_tab, SDXL_TASK, TASK_MODEL_LIST,
PROMPT_W_OPTIONS, POST_PROCESSING_SAMPLER, IP_ADAPTERS_SD, IP_ADAPTERS_SDXL, DIFFUSERS_CONTROLNET_MODEL,
TASK_AND_PREPROCESSORS, update_task_options, change_preprocessor_choices, get_ti_choices,
update_textual_inversion, set_textual_inversion_prompt, create_mask_now)
# Translator
from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple,
get_llm_formats, get_dolphin_model_format, get_dolphin_models,
get_dolphin_model_info, select_dolphin_model, select_dolphin_format, get_dolphin_sysprompt)
# Tagger
from tagger.v2 import v2_upsampling_prompt, V2_ALL_MODELS
from tagger.utils import (gradio_copy_text, gradio_copy_prompt, COPY_ACTION_JS,
V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS, V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
from tagger.tagger import (predict_tags_wd, convert_danbooru_to_e621_prompt,
remove_specific_prompt, insert_recom_prompt, compose_prompt_to_copy,
translate_prompt, select_random_character)
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
def description_ui():
gr.Markdown(
"""
## Danbooru Tags Transformer V2 Demo with WD Tagger & SD3 Long Captioner
(Image =>) Prompt => Upsampled longer prompt
- Mod of p1atdev's [Danbooru Tags Transformer V2 Demo](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2) and [WD Tagger with 🤗 transformers](https://huggingface.co/spaces/p1atdev/wd-tagger-transformers).
- Models: p1atdev's [wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf), [dart-v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft), [dart-v2-sft](https://huggingface.co/p1atdev/dart-v2-sft)\
, gokaygokay's [Florence-2-SD3-Captioner](https://huggingface.co/gokaygokay/Florence-2-SD3-Captioner)
"""
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
MIN_IMAGE_SIZE = 256
css = """
#container { margin: 0 auto; !important; }
#col-container { margin: 0 auto; !important; }
#result { max-width: 520px; max-height: 520px; margin: 0px auto; !important; }
.lora { min-width: 480px; !important; }
.title { font-size: 3em; align-items: center; text-align: center; }
.info { align-items: center; text-align: center; }
.desc [src$='#float'] { float: right; margin: 20px; }
.image { margin: 0px auto; }
"""
with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, 3600)) as demo:
gr.Markdown("# Votepurchase Multiple Model", elem_classes="title")
state = gr.State(value={})
with gr.Tab("Image Generator"):
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(label="Prompt", show_label=False, lines=1, max_lines=8, placeholder="Enter your prompt", container=False)
with gr.Row():
run_button = gr.Button("Run", variant="primary", scale=5)
run_translate_button = gr.Button("Run with LLM Enhance", variant="secondary", scale=3)
auto_trans = gr.Checkbox(label="Auto translate to English", value=False, scale=2)
result = gr.Image(label="Result", elem_id="result", format="png", type="filepath", show_label=False, interactive=False,
show_download_button=True, show_share_button=False, container=True)
with gr.Accordion("History", open=False):
history_files = gr.Files(interactive=False, visible=False)
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", format="png", interactive=False, show_share_button=False,
show_download_button=True)
history_clear_button = gr.Button(value="Clear History", variant="secondary")
history_clear_button.click(lambda: ([], []), None, [history_gallery, history_files], queue=False, show_api=False)
with gr.Accordion("Advanced Settings", open=True):
task = gr.Dropdown(label="Task", choices=SDXL_TASK, value=TASK_MODEL_LIST[0])
with gr.Tab("Generation Settings"):
with gr.Row():
negative_prompt = gr.Text(label="Negative prompt", lines=1, max_lines=6, placeholder="Enter a negative prompt", show_copy_button=True,
value="(low quality, worst quality:1.2), very displeasing, watermark, signature, ugly")
with gr.Accordion("Prompt Settings", open=False):
with gr.Row():
quality_selector = gr.Radio(label="Quality Tag Presets", interactive=True, choices=list(preset_quality.keys()), value="None", scale=3)
style_selector = gr.Radio(label="Style Presets", interactive=True, choices=list(preset_styles.keys()), value="None", scale=3)
with gr.Row():
recom_prompt = gr.Checkbox(label="Recommended prompt", value=True, scale=1)
prompt_syntax = gr.Dropdown(label="Prompt Syntax", choices=PROMPT_W_OPTIONS, value=PROMPT_W_OPTIONS[1][1])
with gr.Row():
with gr.Column(scale=4):
model_name = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.",
choices=get_diffusers_model_list(), value=get_diffusers_model_list()[0],
allow_custom_value=True, interactive=True, min_width=320)
model_info = gr.Markdown(elem_classes="info")
with gr.Column(scale=1):
model_detail = gr.Checkbox(label="Show detail of model in list", value=False)
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
gpu_duration = gr.Slider(label="GPU time duration (seconds)", minimum=5, maximum=240, value=59)
with gr.Row():
width = gr.Slider(label="Width", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 832
height = gr.Slider(label="Height", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 1216
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=7)
guidance_rescale = gr.Slider(label="CFG rescale", value=0., step=0.01, minimum=0., maximum=1.5)
with gr.Row():
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=100, step=1, value=28)
pag_scale = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale")
clip_skip = gr.Checkbox(value=True, label="Layer 2 Clip Skip")
free_u = gr.Checkbox(value=False, label="FreeU")
with gr.Row():
sampler = gr.Dropdown(label="Sampler", choices=get_samplers(), value="Euler")
schedule_type = gr.Dropdown(label="Schedule type", choices=SCHEDULE_TYPE_OPTIONS, value=SCHEDULE_TYPE_OPTIONS[0])
schedule_prediction_type = gr.Dropdown(label="Discrete Sampling Type", choices=SCHEDULE_PREDICTION_TYPE_OPTIONS, value=SCHEDULE_PREDICTION_TYPE_OPTIONS[0])
vae_model = gr.Dropdown(label="VAE Model", choices=get_vaes(), value=get_vaes()[0])
with gr.Accordion("Other Settings", open=False):
with gr.Accordion("Textual inversion", open=True):
active_textual_inversion = gr.Checkbox(value=False, label="Active Textual Inversion in prompt")
use_textual_inversion = gr.CheckboxGroup(choices=get_ti_choices(model_name.value) if active_textual_inversion.value else [], value=None, label="Use Textual Invertion in prompt")
with gr.Tab("LoRA"):
def lora_dropdown(label, visible=True):
return gr.Dropdown(label=label, choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320, visible=visible)
def lora_scale_slider(label, visible=True):
return gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label=label, visible=visible)
def lora_textbox():
return gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
with gr.Row():
with gr.Column():
with gr.Row():
lora1 = lora_dropdown("LoRA 1")
lora1_wt = lora_scale_slider("LoRA 1: weight")
with gr.Row():
lora1_info = lora_textbox()
lora1_copy = gr.Button(value="Copy example to prompt", visible=False)
lora1_md = gr.Markdown(value="", visible=False)
with gr.Column():
with gr.Row():
lora2 = lora_dropdown("LoRA 2")
lora2_wt = lora_scale_slider("LoRA 2: weight")
with gr.Row():
lora2_info = lora_textbox()
lora2_copy = gr.Button(value="Copy example to prompt", visible=False)
lora2_md = gr.Markdown(value="", visible=False)
with gr.Column():
with gr.Row():
lora3 = lora_dropdown("LoRA 3")
lora3_wt = lora_scale_slider("LoRA 3: weight")
with gr.Row():
lora3_info = lora_textbox()
lora3_copy = gr.Button(value="Copy example to prompt", visible=False)
lora3_md = gr.Markdown(value="", visible=False)
with gr.Column():
with gr.Row():
lora4 = lora_dropdown("LoRA 4")
lora4_wt = lora_scale_slider("LoRA 4: weight")
with gr.Row():
lora4_info = lora_textbox()
lora4_copy = gr.Button(value="Copy example to prompt", visible=False)
lora4_md = gr.Markdown(value="", visible=False)
with gr.Column():
with gr.Row():
lora5 = lora_dropdown("LoRA 5")
lora5_wt = lora_scale_slider("LoRA 5: weight")
with gr.Row():
lora5_info = lora_textbox()
lora5_copy = gr.Button(value="Copy example to prompt", visible=False)
lora5_md = gr.Markdown(value="", visible=False)
with gr.Column():
with gr.Row():
lora6 = lora_dropdown("LoRA 6", visible=False)
lora6_wt = lora_scale_slider("LoRA 6: weight", visible=False)
with gr.Row():
lora6_info = lora_textbox()
lora6_copy = gr.Button(value="Copy example to prompt", visible=False)
lora6_md = gr.Markdown(value="", visible=False)
with gr.Column():
with gr.Row():
lora7 = lora_dropdown("LoRA 7", visible=False)
lora7_wt = lora_scale_slider("LoRA 7: weight", visible=False)
with gr.Row():
lora7_info = lora_textbox()
lora7_copy = gr.Button(value="Copy example to prompt", visible=False)
lora7_md = gr.Markdown(value="", visible=False)
with gr.Accordion("From URL", open=True, visible=True):
with gr.Row():
lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=CIVITAI_BASEMODEL, value=["Pony", "Illustrious", "SDXL 1.0"])
lora_search_civitai_sort = gr.Radio(label="Sort", choices=CIVITAI_SORT, value="Highest Rated")
lora_search_civitai_period = gr.Radio(label="Period", choices=CIVITAI_PERIOD, value="AllTime")
with gr.Row():
lora_search_civitai_query = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
lora_search_civitai_tag = gr.Dropdown(label="Tag", choices=get_civitai_tag(), value=get_civitai_tag()[0], allow_custom_value=True)
lora_search_civitai_user = gr.Textbox(label="Username", lines=1)
lora_search_civitai_submit = gr.Button("Search on Civitai")
with gr.Row():
lora_search_civitai_json = gr.JSON(value={}, visible=False)
lora_search_civitai_desc = gr.Markdown(value="", visible=False, elem_classes="desc")
with gr.Accordion("Select from Gallery", open=False):
lora_search_civitai_gallery = gr.Gallery([], label="Results", allow_preview=False, columns=5, show_share_button=False, interactive=False)
lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
lora_download_url = gr.Textbox(label="LoRA's download URL", placeholder="https://civitai.com/api/download/models/28907", info="It has to be .safetensors files, and you can also download them from Hugging Face.", lines=1)
lora_download = gr.Button("Get and set LoRA and apply to prompt")
with gr.Tab("ControlNet / Img2img / Inpaint"):
task_sel = gr.Radio(label="Task Selector", choices=SDXL_TASK, value=TASK_MODEL_LIST[0])
with gr.Row():
with gr.Column():
#image_control = gr.Image(label="Image ControlNet / Inpaint / Img2img", type="filepath", height=384, sources=["upload", "clipboard", "webcam"], show_share_button=False)
image_control = gr.ImageEditor(label="Image ControlNet / Inpaint / Img2img", type="filepath", sources=["upload", "clipboard", "webcam"], image_mode='RGB',
show_share_button=False, show_fullscreen_button=False, layers=False, canvas_size=(384, 384), width=384, height=512,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed", default_size=32), eraser=gr.Eraser(default_size="32"), elem_classes="image")
result_to_ic_button = gr.Button("Get image from generated result")
image_mask = gr.Image(label="Image Mask", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False, elem_classes="image")
with gr.Row():
strength = gr.Slider(minimum=0.01, maximum=1.0, step=0.01, value=0.55, label="Strength",
info="This option adjusts the level of changes for img2img, repaint and inpaint.")
image_resolution = gr.Slider(minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution",
info="The maximum proportional size of the generated image based on the uploaded image.")
with gr.Row():
controlnet_model = gr.Dropdown(label="ControlNet model", choices=DIFFUSERS_CONTROLNET_MODEL, value=DIFFUSERS_CONTROLNET_MODEL[0])
control_net_output_scaling = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet")
control_net_start_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)")
control_net_stop_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)")
with gr.Row():
preprocessor_name = gr.Dropdown(label="Preprocessor Name", choices=TASK_AND_PREPROCESSORS["canny"])
preprocess_resolution = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution")
low_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold")
high_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold")
with gr.Row():
value_threshold = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="'MLSD' Hough value threshold")
distance_threshold = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="'MLSD' Hough distance threshold")
recolor_gamma_correction = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction")
tile_blur_sigma = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'TILE' blur sigma")
with gr.Tab("IP-Adapter"):
IP_MODELS = sorted(list(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL)))
MODE_IP_OPTIONS = ["original", "style", "layout", "style+layout"]
with gr.Accordion("IP-Adapter 1", open=True, visible=True):
with gr.Row():
with gr.Column():
#image_ip1 = gr.Image(label="IP Image", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False)
image_ip1 = gr.ImageEditor(label="IP Image", type="filepath", sources=["upload", "clipboard", "webcam"], image_mode='RGB',
show_share_button=False, show_fullscreen_button=False, layers=False, canvas_size=(384, 384), width=384, height=512,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed", default_size=32), eraser=gr.Eraser(default_size="32"), elem_classes="image")
result_to_ip1_button = gr.Button("Get image from generated result")
mask_ip1 = gr.Image(label="IP Mask (optional)", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False, elem_classes="image")
with gr.Row():
model_ip1 = gr.Dropdown(value="plus_face", label="Model", choices=IP_MODELS)
mode_ip1 = gr.Dropdown(value="original", label="Mode", choices=MODE_IP_OPTIONS)
scale_ip1 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale")
with gr.Accordion("IP-Adapter 2", open=True, visible=True):
with gr.Row():
with gr.Column():
#image_ip2 = gr.Image(label="IP Image", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False)
image_ip2 = gr.ImageEditor(label="IP Image", type="filepath", sources=["upload", "clipboard", "webcam"], image_mode='RGB',
show_share_button=False, show_fullscreen_button=False, layers=False, canvas_size=(384, 384), width=384, height=512,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed", default_size=32), eraser=gr.Eraser(default_size="32"), elem_classes="image")
result_to_ip2_button = gr.Button("Get image from generated result")
mask_ip2 = gr.Image(label="IP Mask (optional)", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False, elem_classes="image")
with gr.Row():
model_ip2 = gr.Dropdown(value="base", label="Model", choices=IP_MODELS)
mode_ip2 = gr.Dropdown(value="style", label="Mode", choices=MODE_IP_OPTIONS)
scale_ip2 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale")
with gr.Tab("Inpaint Mask Maker"):
with gr.Row():
with gr.Column():
image_base = gr.ImageEditor(sources=["upload", "clipboard", "webcam"],
brush=gr.Brush(default_size="32", color_mode="fixed", colors=["rgba(0, 0, 0, 1)", "rgba(0, 0, 0, 0.1)", "rgba(255, 255, 255, 0.1)"]),
eraser=gr.Eraser(default_size="32"), show_share_button=False, show_fullscreen_button=False,
canvas_size=(384, 384), width=384, height=512, elem_classes="image")
result_to_cm_button = gr.Button("Get image from generated result")
invert_mask = gr.Checkbox(value=False, label="Invert mask")
cm_btn = gr.Button("Create mask")
with gr.Column():
img_source = gr.Image(interactive=False, height=384, show_share_button=False, elem_classes="image")
img_result = gr.Image(label="Mask image", show_label=True, interactive=False, height=384, show_share_button=False, elem_classes="image")
cm_btn_send = gr.Button("Send to ControlNet / Img2img / Inpaint")
cm_btn_send_ip1 = gr.Button("Send to IP-Adapter 1")
cm_btn_send_ip2 = gr.Button("Send to IP-Adapter 2")
cm_btn.click(create_mask_now, [image_base, invert_mask], [img_source, img_result], show_api=False)
def send_img(img_source, img_result):
return img_source, img_result
cm_btn_send.click(send_img, [img_source, img_result], [image_control, image_mask], queue=False, show_api=False)
cm_btn_send_ip1.click(send_img, [img_source, img_result], [image_ip1, mask_ip1], queue=False, show_api=False)
cm_btn_send_ip2.click(send_img, [img_source, img_result], [image_ip2, mask_ip2], queue=False, show_api=False)
with gr.Tab("Hires fix / Detailfix / Face restoration"):
with gr.Accordion("Hires fix", open=True):
with gr.Row():
upscaler_model_path = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0])
upscaler_increases_size = gr.Slider(minimum=1.1, maximum=4., step=0.1, value=1.2, label="Upscale by")
upscaler_tile_size = gr.Slider(minimum=0, maximum=512, step=16, value=0, label="Upscaler Tile Size", info="0 = no tiling")
upscaler_tile_overlap = gr.Slider(minimum=0, maximum=48, step=1, value=8, label="Upscaler Tile Overlap")
with gr.Row():
hires_steps = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps")
hires_denoising_strength = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength")
hires_sampler = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
hires_schedule_list = ["Use same schedule type"] + SCHEDULE_TYPE_OPTIONS
hires_schedule_type = gr.Dropdown(label="Hires Schedule type", choices=hires_schedule_list, value=hires_schedule_list[0])
hires_guidance_scale = gr.Slider(minimum=-1., maximum=30., step=0.5, value=-1., label="Hires CFG", info="If the value is -1, the main CFG will be used")
with gr.Row():
hires_prompt = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3)
hires_negative_prompt = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3)
with gr.Accordion("Detail fix", open=True):
with gr.Row():
# Adetailer Inpaint Only
adetailer_inpaint_only = gr.Checkbox(label="Inpaint only", value=True)
# Adetailer Verbose
adetailer_verbose = gr.Checkbox(label="Verbose", value=False)
# Adetailer Sampler
adetailer_sampler = gr.Dropdown(label="Adetailer sampler:", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
with gr.Accordion("Detailfix A", open=True, visible=True):
# Adetailer A
adetailer_active_a = gr.Checkbox(label="Enable Adetailer A", value=False)
prompt_ad_a = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
negative_prompt_ad_a = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
with gr.Row():
strength_ad_a = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
face_detector_ad_a = gr.Checkbox(label="Face detector", value=False)
person_detector_ad_a = gr.Checkbox(label="Person detector", value=True)
hand_detector_ad_a = gr.Checkbox(label="Hand detector", value=False)
with gr.Row():
mask_dilation_a = gr.Number(label="Mask dilation:", value=4, minimum=1)
mask_blur_a = gr.Number(label="Mask blur:", value=4, minimum=1)
mask_padding_a = gr.Number(label="Mask padding:", value=32, minimum=1)
with gr.Accordion("Detailfix B", open=True, visible=True):
# Adetailer B
adetailer_active_b = gr.Checkbox(label="Enable Adetailer B", value=False)
prompt_ad_b = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
negative_prompt_ad_b = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
with gr.Row():
strength_ad_b = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
face_detector_ad_b = gr.Checkbox(label="Face detector", value=False)
person_detector_ad_b = gr.Checkbox(label="Person detector", value=True)
hand_detector_ad_b = gr.Checkbox(label="Hand detector", value=False)
with gr.Row():
mask_dilation_b = gr.Number(label="Mask dilation:", value=4, minimum=1)
mask_blur_b = gr.Number(label="Mask blur:", value=4, minimum=1)
mask_padding_b = gr.Number(label="Mask padding:", value=32, minimum=1)
with gr.Accordion("Face restoration", open=True, visible=True):
face_rest_options = [None] + FACE_RESTORATION_MODELS
with gr.Row():
face_restoration_model = gr.Dropdown(label="Face restoration model", choices=face_rest_options, value=face_rest_options[0])
face_restoration_visibility = gr.Slider(minimum=0., maximum=1., step=0.001, value=1., label="Visibility")
face_restoration_weight = gr.Slider(minimum=0., maximum=1., step=0.001, value=.5, label="Weight", info="(0 = maximum effect, 1 = minimum effect)")
with gr.Tab("Translation Settings"):
chatbot = gr.Chatbot(render_markdown=False, visible=False) # component for auto-translation
chat_model = gr.Dropdown(choices=get_dolphin_models(), value=get_dolphin_models()[0][1], allow_custom_value=True, label="Model")
chat_model_info = gr.Markdown(value=get_dolphin_model_info(get_dolphin_models()[0][1]), label="Model info")
chat_format = gr.Dropdown(choices=get_llm_formats(), value=get_dolphin_model_format(get_dolphin_models()[0][1]), label="Message format")
with gr.Row():
chat_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
chat_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
chat_topk = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k")
chat_rp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
chat_sysmsg = gr.Textbox(value=get_dolphin_sysprompt(), label="System message")
examples = gr.Examples(
examples = [
["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
["kafuu chino, 1girl, solo"],
["1girl"],
["beautiful sunset"],
],
inputs=[prompt],
cache_examples=False,
)
model_name.change(update_task_options, [model_name, task], [task], queue=False, show_api=False)\
.success(update_task_options, [model_name, task_sel], [task_sel], queue=False, show_api=False)
task_sel.select(lambda x: x, [task_sel], [task], queue=False, show_api=False)
task.change(change_preprocessor_choices, [task], [preprocessor_name], queue=False, show_api=False)\
.success(lambda x: x, [task], [task_sel], queue=False, show_api=False)
active_textual_inversion.change(update_textual_inversion, [active_textual_inversion, model_name], [use_textual_inversion], queue=False, show_api=False)
model_name.change(update_textual_inversion, [active_textual_inversion, model_name], [use_textual_inversion], queue=False, show_api=False)
use_textual_inversion.change(set_textual_inversion_prompt, [use_textual_inversion, prompt, negative_prompt, prompt_syntax], [prompt, negative_prompt])
result_to_cm_button.click(lambda x: x, [result], [image_base], queue=False, show_api=False)
result_to_ic_button.click(lambda x: x, [result], [image_control], queue=False, show_api=False)
result_to_ip1_button.click(lambda x: x, [result], [image_ip1], queue=False, show_api=False)
result_to_ip2_button.click(lambda x: x, [result], [image_ip2], queue=False, show_api=False)
gr.on( #lambda x: None, inputs=None, outputs=result).then(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
guidance_scale, num_inference_steps, model_name,
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt,
lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, task, prompt_syntax,
sampler, vae_model, schedule_type, schedule_prediction_type,
clip_skip, pag_scale, free_u, guidance_rescale,
image_control, image_mask, strength, image_resolution,
controlnet_model, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold,
preprocessor_name, preprocess_resolution, low_threshold, high_threshold,
value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma,
image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1,
image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2,
upscaler_model_path, upscaler_increases_size, upscaler_tile_size, upscaler_tile_overlap, hires_steps, hires_denoising_strength,
hires_sampler, hires_schedule_type, hires_guidance_scale, hires_prompt, hires_negative_prompt,
adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a,
prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a,
mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b,
face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b,
active_textual_inversion, face_restoration_model, face_restoration_visibility, face_restoration_weight, gpu_duration, auto_trans, recom_prompt],
outputs=[result],
queue=True,
show_progress="full",
show_api=True,
)
gr.on( #lambda x: None, inputs=None, outputs=result).then(
triggers=[run_translate_button.click],
fn=_infer, # dummy fn for api
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
guidance_scale, num_inference_steps, model_name,
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt,
lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, task, prompt_syntax,
sampler, vae_model, schedule_type, schedule_prediction_type,
clip_skip, pag_scale, free_u, guidance_rescale,
image_control, image_mask, strength, image_resolution,
controlnet_model, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold,
preprocessor_name, preprocess_resolution, low_threshold, high_threshold,
value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma,
image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1,
image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2,
upscaler_model_path, upscaler_increases_size, upscaler_tile_size, upscaler_tile_overlap, hires_steps, hires_denoising_strength,
hires_sampler, hires_schedule_type, hires_guidance_scale, hires_prompt, hires_negative_prompt,
adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a,
prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a,
mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b,
face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b,
active_textual_inversion, face_restoration_model, face_restoration_visibility, face_restoration_weight, gpu_duration, auto_trans, recom_prompt],
outputs=[result],
queue=False,
show_api=True,
api_name="infer_translate",
).success(
fn=dolphin_respond_auto,
inputs=[prompt, chatbot, chat_model, chat_sysmsg, chat_tokens, chat_temperature, chat_topp, chat_topk, chat_rp, state],
outputs=[chatbot, result, prompt],
queue=True,
show_progress="full",
show_api=False,
).success(
fn=dolphin_parse_simple,
inputs=[prompt, chatbot, state],
outputs=[prompt],
queue=False,
show_api=False,
).success(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
guidance_scale, num_inference_steps, model_name,
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt,
lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, task, prompt_syntax,
sampler, vae_model, schedule_type, schedule_prediction_type,
clip_skip, pag_scale, free_u, guidance_rescale,
image_control, image_mask, strength, image_resolution,
controlnet_model, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold,
preprocessor_name, preprocess_resolution, low_threshold, high_threshold,
value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma,
image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1,
image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2,
upscaler_model_path, upscaler_increases_size, upscaler_tile_size, upscaler_tile_overlap, hires_steps, hires_denoising_strength,
hires_sampler, hires_schedule_type, hires_guidance_scale, hires_prompt, hires_negative_prompt,
adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a,
prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a,
mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b,
face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b,
active_textual_inversion, face_restoration_model, face_restoration_visibility, face_restoration_weight, gpu_duration, auto_trans, recom_prompt],
outputs=[result],
queue=True,
show_progress="full",
show_api=False,
).success(lambda: None, None, chatbot, queue=False, show_api=False)\
.success(pass_result, [result], [result], queue=False, show_api=False) # dummy fn for api
result.change(save_image_history, [result, history_gallery, history_files, model_name], [history_gallery, history_files], queue=False, show_api=False)
gr.on(
triggers=[lora1.change, lora1_wt.change, lora2.change, lora2_wt.change, lora3.change, lora3_wt.change,
lora4.change, lora4_wt.change, lora5.change, lora5_wt.change, lora6.change, lora6_wt.change, lora7.change, lora7_wt.change, prompt_syntax.change],
fn=update_loras,
inputs=[prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt],
outputs=[prompt, lora1, lora1_wt, lora1_info, lora1_copy, lora1_md,
lora2, lora2_wt, lora2_info, lora2_copy, lora2_md, lora3, lora3_wt, lora3_info, lora3_copy, lora3_md,
lora4, lora4_wt, lora4_info, lora4_copy, lora4_md, lora5, lora5_wt, lora5_info, lora5_copy, lora5_md,
lora6, lora6_wt, lora6_info, lora6_copy, lora6_md, lora7, lora7_wt, lora7_info, lora7_copy, lora7_md],
queue=False,
trigger_mode="once",
show_api=False,
)
lora1_copy.click(apply_lora_prompt, [prompt, lora1_info], [prompt], queue=False, show_api=False)
lora2_copy.click(apply_lora_prompt, [prompt, lora2_info], [prompt], queue=False, show_api=False)
lora3_copy.click(apply_lora_prompt, [prompt, lora3_info], [prompt], queue=False, show_api=False)
lora4_copy.click(apply_lora_prompt, [prompt, lora4_info], [prompt], queue=False, show_api=False)
lora5_copy.click(apply_lora_prompt, [prompt, lora5_info], [prompt], queue=False, show_api=False)
lora6_copy.click(apply_lora_prompt, [prompt, lora6_info], [prompt], queue=False, show_api=False)
lora7_copy.click(apply_lora_prompt, [prompt, lora7_info], [prompt], queue=False, show_api=False)
gr.on(
triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
fn=search_civitai_lora,
inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period, lora_search_civitai_tag, lora_search_civitai_user, lora_search_civitai_gallery],
outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query, lora_search_civitai_gallery],
scroll_to_output=True,
queue=True,
show_api=False,
)
lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True) # fn for api
lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
gr.on(
triggers=[lora_download.click, lora_download_url.submit],
fn=download_my_lora,
inputs=[lora_download_url, lora1, lora2, lora3, lora4, lora5, lora6, lora7],
outputs=[lora1, lora2, lora3, lora4, lora5, lora6, lora7],
scroll_to_output=True,
queue=True,
show_api=False,
)
lora_search_civitai_gallery.select(update_civitai_selection, None, [lora_search_civitai_result], queue=False, show_api=False)
#recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
gr.on(
triggers=[quality_selector.change, style_selector.change],
fn=process_style_prompt,
inputs=[prompt, negative_prompt, style_selector, quality_selector],
outputs=[prompt, negative_prompt],
queue=False,
trigger_mode="once",
show_api=False,
)
model_detail.change(enable_diffusers_model_detail, [model_detail, model_name, state], [model_detail, model_name, state], queue=False, show_api=False)
model_name.change(get_t2i_model_info, [model_name], [model_info], queue=False, show_api=False)
chat_model.change(select_dolphin_model, [chat_model, state], [chat_model, chat_format, chat_model_info, state], queue=True, show_progress="full", show_api=False)\
.success(lambda: None, None, chatbot, queue=False, show_api=False)
chat_format.change(select_dolphin_format, [chat_format, state], [chat_format, state], queue=False, show_api=False)\
.success(lambda: None, None, chatbot, queue=False, show_api=False)
# Tagger
with gr.Tab("Tags Transformer with Tagger"):
with gr.Column():
with gr.Group():
input_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
with gr.Accordion(label="Advanced options", open=False):
general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
input_tag_type = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
image_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
generate_from_image_btn = gr.Button(value="GENERATE TAGS FROM IMAGE", size="lg", variant="primary")
with gr.Group():
with gr.Row():
input_character = gr.Textbox(label="Character tags", placeholder="hatsune miku")
input_copyright = gr.Textbox(label="Copyright tags", placeholder="vocaloid")
random_character = gr.Button(value="Random character 🎲", size="sm")
input_general = gr.TextArea(label="General tags", lines=4, placeholder="1girl, ...", value="")
input_tags_to_copy = gr.Textbox(value="", visible=False)
with gr.Row():
copy_input_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
copy_prompt_btn_input = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
translate_input_prompt_button = gr.Button(value="Translate prompt to English", size="sm", variant="secondary")
tag_type = gr.Radio(label="Output tag conversion", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="e621", visible=False)
input_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="explicit")
with gr.Accordion(label="Advanced options", open=False):
input_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square")
input_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="very_long")
input_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
input_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
model_name = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
dummy_np = gr.Textbox(label="Negative prompt", value="", visible=False)
recom_animagine = gr.Textbox(label="Animagine reccomended prompt", value="Animagine", visible=False)
recom_pony = gr.Textbox(label="Pony reccomended prompt", value="Pony", visible=False)
generate_btn = gr.Button(value="GENERATE TAGS", size="lg", variant="primary")
with gr.Row():
with gr.Group():
output_text = gr.TextArea(label="Output tags", interactive=False, show_copy_button=True)
with gr.Row():
copy_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
copy_prompt_btn = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
with gr.Group():
output_text_pony = gr.TextArea(label="Output tags (Pony e621 style)", interactive=False, show_copy_button=True)
with gr.Row():
copy_btn_pony = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
copy_prompt_btn_pony = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
random_character.click(select_random_character, [input_copyright, input_character], [input_copyright, input_character], queue=False, show_api=False)
translate_input_prompt_button.click(translate_prompt, [input_general], [input_general], queue=False, show_api=False)
translate_input_prompt_button.click(translate_prompt, [input_character], [input_character], queue=False, show_api=False)
translate_input_prompt_button.click(translate_prompt, [input_copyright], [input_copyright], queue=False, show_api=False)
generate_from_image_btn.click(
lambda: ("", "", ""), None, [input_copyright, input_character, input_general], queue=False, show_api=False,
).success(
predict_tags_wd,
[input_image, input_general, image_algorithms, general_threshold, character_threshold],
[input_copyright, input_character, input_general, copy_input_btn],
show_api=False,
).success(
predict_tags_fl2_sd3, [input_image, input_general, image_algorithms], [input_general], show_api=False,
).success(
remove_specific_prompt, [input_general, keep_tags], [input_general], queue=False, show_api=False,
).success(
convert_danbooru_to_e621_prompt, [input_general, input_tag_type], [input_general], queue=False, show_api=False,
).success(
insert_recom_prompt, [input_general, dummy_np, recom_prompt], [input_general, dummy_np], queue=False, show_api=False,
).success(lambda: gr.update(interactive=True), None, [copy_prompt_btn_input], queue=False, show_api=False)
copy_input_btn.click(compose_prompt_to_copy, [input_character, input_copyright, input_general], [input_tags_to_copy], show_api=False)\
.success(gradio_copy_text, [input_tags_to_copy], js=COPY_ACTION_JS, show_api=False)
copy_prompt_btn_input.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy], show_api=False)\
.success(gradio_copy_prompt, inputs=[input_tags_to_copy], outputs=[prompt], show_api=False)
generate_btn.click(
v2_upsampling_prompt,
[model_name, input_copyright, input_character, input_general,
input_rating, input_aspect_ratio, input_length, input_identity, input_ban_tags],
[output_text],
show_api=False,
).success(
convert_danbooru_to_e621_prompt, [output_text, tag_type], [output_text_pony], queue=False, show_api=False,
).success(
insert_recom_prompt, [output_text, dummy_np, recom_animagine], [output_text, dummy_np], queue=False, show_api=False,
).success(
insert_recom_prompt, [output_text_pony, dummy_np, recom_pony], [output_text_pony, dummy_np], queue=False, show_api=False,
).success(lambda: (gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)),
None, [copy_btn, copy_btn_pony, copy_prompt_btn, copy_prompt_btn_pony], queue=False, show_api=False)
copy_btn.click(gradio_copy_text, [output_text], js=COPY_ACTION_JS, show_api=False)
copy_btn_pony.click(gradio_copy_text, [output_text_pony], js=COPY_ACTION_JS, show_api=False)
copy_prompt_btn.click(gradio_copy_prompt, inputs=[output_text], outputs=[prompt], show_api=False)
copy_prompt_btn_pony.click(gradio_copy_prompt, inputs=[output_text_pony], outputs=[prompt], show_api=False)
with gr.Tab("PNG Info"):
with gr.Row():
with gr.Column():
image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])
with gr.Column():
result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)
image_metadata.change(
fn=extract_exif_data,
inputs=[image_metadata],
outputs=[result_metadata],
)
with gr.Tab("Upscaler"):
with gr.Row():
with gr.Column():
USCALER_TAB_KEYS = [name for name in UPSCALER_KEYS[9:]]
image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"])
upscaler_tab = gr.Dropdown(label="Upscaler", choices=USCALER_TAB_KEYS, value=USCALER_TAB_KEYS[5])
upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by")
generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary")
with gr.Column():
result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png")
generate_button_up_tab.click(
fn=process_upscale,
inputs=[image_up_tab, upscaler_tab, upscaler_size_tab],
outputs=[result_up_tab],
)
with gr.Tab("Preprocessor", render=True):
preprocessor_tab()
gr.LoginButton()
gr.DuplicateButton(value="Duplicate Space for private use (This demo does not work on CPU. Requires GPU Space)")
demo.queue()
demo.launch(show_error=True, debug=True)
|