Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -1,659 +1,299 @@
|
|
1 |
-
import spaces
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
(
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
.
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
show_download_button=True)
|
73 |
-
history_clear_button = gr.Button(value="Clear History", variant="secondary")
|
74 |
-
history_clear_button.click(lambda: ([], []), None, [history_gallery, history_files], queue=False, show_api=False)
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
with gr.Tab("Generation Settings"):
|
79 |
-
with gr.Row():
|
80 |
-
negative_prompt = gr.Text(label="Negative prompt", lines=1, max_lines=6, placeholder="Enter a negative prompt", show_copy_button=True,
|
81 |
-
value="(low quality, worst quality:1.2), very displeasing, watermark, signature, ugly")
|
82 |
-
with gr.Row():
|
83 |
-
with gr.Column(scale=4):
|
84 |
-
model_name = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.",
|
85 |
-
choices=get_diffusers_model_list(), value=get_diffusers_model_list()[0],
|
86 |
-
allow_custom_value=True, interactive=True, min_width=320)
|
87 |
-
model_info = gr.Markdown(elem_classes="info")
|
88 |
-
with gr.Column(scale=1):
|
89 |
-
model_detail = gr.Checkbox(label="Show detail of model in list", value=False)
|
90 |
-
with gr.Accordion("Prompt Settings", open=False):
|
91 |
-
with gr.Row():
|
92 |
-
quality_selector = gr.Radio(label="Quality Tag Presets", interactive=True, choices=list(preset_quality.keys()), value="None", scale=3)
|
93 |
-
style_selector = gr.Radio(label="Style Presets", interactive=True, choices=list(preset_styles.keys()), value="None", scale=3)
|
94 |
-
recom_prompt = gr.Checkbox(label="Recommended prompt", value=True, scale=1)
|
95 |
-
prompt_syntax = gr.Dropdown(label="Prompt Syntax", choices=PROMPT_W_OPTIONS, value=PROMPT_W_OPTIONS[1][1])
|
96 |
-
with gr.Row():
|
97 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
98 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
99 |
-
gpu_duration = gr.Slider(label="GPU time duration (seconds)", minimum=5, maximum=240, value=59)
|
100 |
-
with gr.Row():
|
101 |
-
width = gr.Slider(label="Width", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 832
|
102 |
-
height = gr.Slider(label="Height", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 1216
|
103 |
-
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=7)
|
104 |
-
guidance_rescale = gr.Slider(label="CFG rescale", value=0., step=0.01, minimum=0., maximum=1.5)
|
105 |
-
with gr.Row():
|
106 |
-
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=100, step=1, value=28)
|
107 |
-
pag_scale = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale")
|
108 |
-
clip_skip = gr.Checkbox(value=True, label="Layer 2 Clip Skip")
|
109 |
-
free_u = gr.Checkbox(value=False, label="FreeU")
|
110 |
-
with gr.Row():
|
111 |
-
sampler = gr.Dropdown(label="Sampler", choices=get_samplers(), value="Euler")
|
112 |
-
schedule_type = gr.Dropdown(label="Schedule type", choices=SCHEDULE_TYPE_OPTIONS, value=SCHEDULE_TYPE_OPTIONS[0])
|
113 |
-
schedule_prediction_type = gr.Dropdown(label="Discrete Sampling Type", choices=SCHEDULE_PREDICTION_TYPE_OPTIONS, value=SCHEDULE_PREDICTION_TYPE_OPTIONS[0])
|
114 |
-
vae_model = gr.Dropdown(label="VAE Model", choices=get_vaes(), value=get_vaes()[0])
|
115 |
-
with gr.Accordion("Other Settings", open=False):
|
116 |
-
with gr.Accordion("Textual inversion", open=True):
|
117 |
-
active_textual_inversion = gr.Checkbox(value=False, label="Active Textual Inversion in prompt")
|
118 |
-
use_textual_inversion = gr.CheckboxGroup(choices=get_ti_choices(model_name.value) if active_textual_inversion.value else [], value=None, label="Use Textual Invertion in prompt")
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
return gr.Dropdown(label=label, choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320, visible=visible)
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
lora2_copy = gr.Button(value="Copy example to prompt", visible=False)
|
146 |
-
lora2_md = gr.Markdown(value="", visible=False)
|
147 |
-
with gr.Column():
|
148 |
-
with gr.Row():
|
149 |
-
lora3 = lora_dropdown("LoRA 3")
|
150 |
-
lora3_wt = lora_scale_slider("LoRA 3: weight")
|
151 |
-
with gr.Row():
|
152 |
-
lora3_info = lora_textbox()
|
153 |
-
lora3_copy = gr.Button(value="Copy example to prompt", visible=False)
|
154 |
-
lora3_md = gr.Markdown(value="", visible=False)
|
155 |
-
with gr.Column():
|
156 |
-
with gr.Row():
|
157 |
-
lora4 = lora_dropdown("LoRA 4")
|
158 |
-
lora4_wt = lora_scale_slider("LoRA 4: weight")
|
159 |
-
with gr.Row():
|
160 |
-
lora4_info = lora_textbox()
|
161 |
-
lora4_copy = gr.Button(value="Copy example to prompt", visible=False)
|
162 |
-
lora4_md = gr.Markdown(value="", visible=False)
|
163 |
-
with gr.Column():
|
164 |
-
with gr.Row():
|
165 |
-
lora5 = lora_dropdown("LoRA 5")
|
166 |
-
lora5_wt = lora_scale_slider("LoRA 5: weight")
|
167 |
-
with gr.Row():
|
168 |
-
lora5_info = lora_textbox()
|
169 |
-
lora5_copy = gr.Button(value="Copy example to prompt", visible=False)
|
170 |
-
lora5_md = gr.Markdown(value="", visible=False)
|
171 |
-
with gr.Column():
|
172 |
-
with gr.Row():
|
173 |
-
lora6 = lora_dropdown("LoRA 6", visible=False)
|
174 |
-
lora6_wt = lora_scale_slider("LoRA 6: weight", visible=False)
|
175 |
-
with gr.Row():
|
176 |
-
lora6_info = lora_textbox()
|
177 |
-
lora6_copy = gr.Button(value="Copy example to prompt", visible=False)
|
178 |
-
lora6_md = gr.Markdown(value="", visible=False)
|
179 |
-
with gr.Column():
|
180 |
-
with gr.Row():
|
181 |
-
lora7 = lora_dropdown("LoRA 7", visible=False)
|
182 |
-
lora7_wt = lora_scale_slider("LoRA 7: weight", visible=False)
|
183 |
-
with gr.Row():
|
184 |
-
lora7_info = lora_textbox()
|
185 |
-
lora7_copy = gr.Button(value="Copy example to prompt", visible=False)
|
186 |
-
lora7_md = gr.Markdown(value="", visible=False)
|
187 |
-
with gr.Accordion("From URL", open=True, visible=True):
|
188 |
-
with gr.Row():
|
189 |
-
lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=CIVITAI_BASEMODEL, value=["Pony", "Illustrious", "SDXL 1.0"])
|
190 |
-
lora_search_civitai_sort = gr.Radio(label="Sort", choices=CIVITAI_SORT, value="Highest Rated")
|
191 |
-
lora_search_civitai_period = gr.Radio(label="Period", choices=CIVITAI_PERIOD, value="AllTime")
|
192 |
-
with gr.Row():
|
193 |
-
lora_search_civitai_query = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
|
194 |
-
lora_search_civitai_tag = gr.Dropdown(label="Tag", choices=get_civitai_tag(), value=get_civitai_tag()[0], allow_custom_value=True)
|
195 |
-
lora_search_civitai_user = gr.Textbox(label="Username", lines=1)
|
196 |
-
lora_search_civitai_submit = gr.Button("Search on Civitai")
|
197 |
-
with gr.Row():
|
198 |
-
lora_search_civitai_json = gr.JSON(value={}, visible=False)
|
199 |
-
lora_search_civitai_desc = gr.Markdown(value="", visible=False, elem_classes="desc")
|
200 |
-
with gr.Accordion("Select from Gallery", open=False):
|
201 |
-
lora_search_civitai_gallery = gr.Gallery([], label="Results", allow_preview=False, columns=5, show_share_button=False, interactive=False)
|
202 |
-
lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
|
203 |
-
lora_download_url = gr.Textbox(label="LoRA's download URL", placeholder="https://civitai.com/api/download/models/28907", info="It has to be .safetensors files, and you can also download them from Hugging Face.", lines=1)
|
204 |
-
lora_download = gr.Button("Get and set LoRA and apply to prompt")
|
205 |
-
|
206 |
-
with gr.Tab("ControlNet / Img2img / Inpaint"):
|
207 |
-
with gr.Row():
|
208 |
-
#image_control = gr.Image(label="Image ControlNet / Inpaint / Img2img", type="filepath", height=384, sources=["upload", "clipboard", "webcam"], show_share_button=False)
|
209 |
-
image_control = gr.ImageEditor(label="Image ControlNet / Inpaint / Img2img", type="filepath", sources=["upload", "clipboard", "webcam"], image_mode='RGB',
|
210 |
-
show_share_button=False, show_fullscreen_button=False, layers=False, canvas_size=(384, 384), width=384, height=512,
|
211 |
-
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed", default_size=32), eraser=gr.Eraser(default_size="32"))
|
212 |
-
image_mask = gr.Image(label="Image Mask", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False)
|
213 |
-
with gr.Row():
|
214 |
-
strength = gr.Slider(minimum=0.01, maximum=1.0, step=0.01, value=0.55, label="Strength",
|
215 |
-
info="This option adjusts the level of changes for img2img and inpainting.")
|
216 |
-
image_resolution = gr.Slider(minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution",
|
217 |
-
info="The maximum proportional size of the generated image based on the uploaded image.")
|
218 |
-
with gr.Row():
|
219 |
-
controlnet_model = gr.Dropdown(label="ControlNet model", choices=DIFFUSERS_CONTROLNET_MODEL, value=DIFFUSERS_CONTROLNET_MODEL[0])
|
220 |
-
control_net_output_scaling = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet")
|
221 |
-
control_net_start_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)")
|
222 |
-
control_net_stop_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)")
|
223 |
-
with gr.Row():
|
224 |
-
preprocessor_name = gr.Dropdown(label="Preprocessor Name", choices=TASK_AND_PREPROCESSORS["canny"])
|
225 |
-
preprocess_resolution = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution")
|
226 |
-
low_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold")
|
227 |
-
high_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold")
|
228 |
-
with gr.Row():
|
229 |
-
value_threshold = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="'MLSD' Hough value threshold")
|
230 |
-
distance_threshold = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="'MLSD' Hough distance threshold")
|
231 |
-
recolor_gamma_correction = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction")
|
232 |
-
tile_blur_sigma = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'TILE' blur sigma")
|
233 |
-
|
234 |
-
with gr.Tab("IP-Adapter"):
|
235 |
-
IP_MODELS = sorted(list(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL)))
|
236 |
-
MODE_IP_OPTIONS = ["original", "style", "layout", "style+layout"]
|
237 |
-
with gr.Accordion("IP-Adapter 1", open=True, visible=True):
|
238 |
-
with gr.Row():
|
239 |
-
#image_ip1 = gr.Image(label="IP Image", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False)
|
240 |
-
image_ip1 = gr.ImageEditor(label="IP Image", type="filepath", sources=["upload", "clipboard", "webcam"], image_mode='RGB',
|
241 |
-
show_share_button=False, show_fullscreen_button=False, layers=False, canvas_size=(384, 384), width=384, height=512,
|
242 |
-
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed", default_size=32), eraser=gr.Eraser(default_size="32"))
|
243 |
-
mask_ip1 = gr.Image(label="IP Mask (optional)", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False)
|
244 |
-
with gr.Row():
|
245 |
-
model_ip1 = gr.Dropdown(value="plus_face", label="Model", choices=IP_MODELS)
|
246 |
-
mode_ip1 = gr.Dropdown(value="original", label="Mode", choices=MODE_IP_OPTIONS)
|
247 |
-
scale_ip1 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale")
|
248 |
-
with gr.Accordion("IP-Adapter 2", open=True, visible=True):
|
249 |
-
with gr.Row():
|
250 |
-
#image_ip2 = gr.Image(label="IP Image", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False)
|
251 |
-
image_ip2 = gr.ImageEditor(label="IP Image", type="filepath", sources=["upload", "clipboard", "webcam"], image_mode='RGB',
|
252 |
-
show_share_button=False, show_fullscreen_button=False, layers=False, canvas_size=(384, 384), width=384, height=512,
|
253 |
-
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed", default_size=32), eraser=gr.Eraser(default_size="32"))
|
254 |
-
mask_ip2 = gr.Image(label="IP Mask (optional)", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False)
|
255 |
with gr.Row():
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
with gr.Tab("Inpaint Mask Maker"):
|
261 |
with gr.Row():
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
cm_btn_send_ip2.click(send_img, [img_source, img_result], [image_ip2, mask_ip2], queue=False, show_api=False)
|
281 |
-
|
282 |
-
with gr.Tab("Hires fix / Detailfix"):
|
283 |
-
with gr.Accordion("Hires fix", open=True):
|
284 |
-
with gr.Row():
|
285 |
-
upscaler_model_path = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0])
|
286 |
-
upscaler_increases_size = gr.Slider(minimum=1.1, maximum=4., step=0.1, value=1.2, label="Upscale by")
|
287 |
-
esrgan_tile = gr.Slider(minimum=0, value=0, maximum=500, step=1, label="ESRGAN Tile")
|
288 |
-
esrgan_tile_overlap = gr.Slider(minimum=1, maximum=200, step=1, value=8, label="ESRGAN Tile Overlap")
|
289 |
-
with gr.Row():
|
290 |
-
hires_steps = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps")
|
291 |
-
hires_denoising_strength = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength")
|
292 |
-
hires_sampler = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
|
293 |
-
hires_schedule_list = ["Use same schedule type"] + SCHEDULE_TYPE_OPTIONS
|
294 |
-
hires_schedule_type = gr.Dropdown(label="Hires Schedule type", choices=hires_schedule_list, value=hires_schedule_list[0])
|
295 |
-
hires_guidance_scale = gr.Slider(minimum=-1., maximum=30., step=0.5, value=-1., label="Hires CFG", info="If the value is -1, the main CFG will be used")
|
296 |
-
with gr.Row():
|
297 |
-
hires_prompt = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3)
|
298 |
-
hires_negative_prompt = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3)
|
299 |
-
with gr.Accordion("Detail fix", open=True):
|
300 |
-
with gr.Row():
|
301 |
-
# Adetailer Inpaint Only
|
302 |
-
adetailer_inpaint_only = gr.Checkbox(label="Inpaint only", value=True)
|
303 |
-
# Adetailer Verbose
|
304 |
-
adetailer_verbose = gr.Checkbox(label="Verbose", value=False)
|
305 |
-
# Adetailer Sampler
|
306 |
-
adetailer_sampler = gr.Dropdown(label="Adetailer sampler:", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
|
307 |
with gr.Row():
|
308 |
-
|
309 |
-
|
310 |
-
adetailer_active_a = gr.Checkbox(label="Enable Adetailer A", value=False)
|
311 |
-
prompt_ad_a = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
|
312 |
-
negative_prompt_ad_a = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
|
313 |
-
with gr.Row():
|
314 |
-
strength_ad_a = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
|
315 |
-
face_detector_ad_a = gr.Checkbox(label="Face detector", value=False)
|
316 |
-
person_detector_ad_a = gr.Checkbox(label="Person detector", value=True)
|
317 |
-
hand_detector_ad_a = gr.Checkbox(label="Hand detector", value=False)
|
318 |
-
with gr.Row():
|
319 |
-
mask_dilation_a = gr.Number(label="Mask dilation:", value=4, minimum=1)
|
320 |
-
mask_blur_a = gr.Number(label="Mask blur:", value=4, minimum=1)
|
321 |
-
mask_padding_a = gr.Number(label="Mask padding:", value=32, minimum=1)
|
322 |
-
with gr.Accordion("Detailfix B", open=True, visible=True):
|
323 |
-
# Adetailer B
|
324 |
-
adetailer_active_b = gr.Checkbox(label="Enable Adetailer B", value=False)
|
325 |
-
prompt_ad_b = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
|
326 |
-
negative_prompt_ad_b = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
|
327 |
-
with gr.Row():
|
328 |
-
strength_ad_b = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
|
329 |
-
face_detector_ad_b = gr.Checkbox(label="Face detector", value=False)
|
330 |
-
person_detector_ad_b = gr.Checkbox(label="Person detector", value=True)
|
331 |
-
hand_detector_ad_b = gr.Checkbox(label="Hand detector", value=False)
|
332 |
-
with gr.Row():
|
333 |
-
mask_dilation_b = gr.Number(label="Mask dilation:", value=4, minimum=1)
|
334 |
-
mask_blur_b = gr.Number(label="Mask blur:", value=4, minimum=1)
|
335 |
-
mask_padding_b = gr.Number(label="Mask padding:", value=32, minimum=1)
|
336 |
-
|
337 |
-
with gr.Tab("Translation Settings"):
|
338 |
-
chatbot = gr.Chatbot(render_markdown=False, visible=False) # component for auto-translation
|
339 |
-
chat_model = gr.Dropdown(choices=get_dolphin_models(), value=get_dolphin_models()[0][1], allow_custom_value=True, label="Model")
|
340 |
-
chat_model_info = gr.Markdown(value=get_dolphin_model_info(get_dolphin_models()[0][1]), label="Model info")
|
341 |
-
chat_format = gr.Dropdown(choices=get_llm_formats(), value=get_dolphin_model_format(get_dolphin_models()[0][1]), label="Message format")
|
342 |
-
with gr.Row():
|
343 |
-
chat_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
|
344 |
-
chat_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
345 |
-
chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
346 |
-
chat_topk = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k")
|
347 |
-
chat_rp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
|
348 |
-
chat_sysmsg = gr.Textbox(value=get_dolphin_sysprompt(), label="System message")
|
349 |
-
|
350 |
-
examples = gr.Examples(
|
351 |
-
examples = [
|
352 |
-
["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
|
353 |
-
["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
|
354 |
-
["kafuu chino, 1girl, solo"],
|
355 |
-
["1girl"],
|
356 |
-
["beautiful sunset"],
|
357 |
-
],
|
358 |
-
inputs=[prompt],
|
359 |
-
cache_examples=False,
|
360 |
-
)
|
361 |
-
|
362 |
-
model_name.change(update_task_options, [model_name, task], [task], queue=False, show_api=False)
|
363 |
-
task.change(change_preprocessor_choices, [task], [preprocessor_name], queue=False, show_api=False)
|
364 |
-
active_textual_inversion.change(update_textual_inversion, [active_textual_inversion, model_name], [use_textual_inversion], queue=False, show_api=False)
|
365 |
-
model_name.change(update_textual_inversion, [active_textual_inversion, model_name], [use_textual_inversion], queue=False, show_api=False)
|
366 |
-
use_textual_inversion.change(set_textual_inversion_prompt, [use_textual_inversion, prompt, negative_prompt, prompt_syntax], [prompt, negative_prompt])
|
367 |
-
|
368 |
-
gr.on( #lambda x: None, inputs=None, outputs=result).then(
|
369 |
-
triggers=[run_button.click, prompt.submit],
|
370 |
-
fn=infer,
|
371 |
-
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
372 |
-
guidance_scale, num_inference_steps, model_name,
|
373 |
-
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt,
|
374 |
-
lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, task, prompt_syntax,
|
375 |
-
sampler, vae_model, schedule_type, schedule_prediction_type,
|
376 |
-
clip_skip, pag_scale, free_u, guidance_rescale,
|
377 |
-
image_control, image_mask, strength, image_resolution,
|
378 |
-
controlnet_model, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold,
|
379 |
-
preprocessor_name, preprocess_resolution, low_threshold, high_threshold,
|
380 |
-
value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma,
|
381 |
-
image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1,
|
382 |
-
image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2,
|
383 |
-
upscaler_model_path, upscaler_increases_size, esrgan_tile, esrgan_tile_overlap, hires_steps, hires_denoising_strength,
|
384 |
-
hires_sampler, hires_schedule_type, hires_guidance_scale, hires_prompt, hires_negative_prompt,
|
385 |
-
adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a,
|
386 |
-
prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a,
|
387 |
-
mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b,
|
388 |
-
face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b,
|
389 |
-
active_textual_inversion, gpu_duration, auto_trans, recom_prompt],
|
390 |
-
outputs=[result],
|
391 |
-
queue=True,
|
392 |
-
show_progress="full",
|
393 |
-
show_api=True,
|
394 |
-
)
|
395 |
-
|
396 |
-
gr.on( #lambda x: None, inputs=None, outputs=result).then(
|
397 |
-
triggers=[run_translate_button.click],
|
398 |
-
fn=_infer, # dummy fn for api
|
399 |
-
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
400 |
-
guidance_scale, num_inference_steps, model_name,
|
401 |
-
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt,
|
402 |
-
lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, task, prompt_syntax,
|
403 |
-
sampler, vae_model, schedule_type, schedule_prediction_type,
|
404 |
-
clip_skip, pag_scale, free_u, guidance_rescale,
|
405 |
-
image_control, image_mask, strength, image_resolution,
|
406 |
-
controlnet_model, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold,
|
407 |
-
preprocessor_name, preprocess_resolution, low_threshold, high_threshold,
|
408 |
-
value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma,
|
409 |
-
image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1,
|
410 |
-
image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2,
|
411 |
-
upscaler_model_path, upscaler_increases_size, esrgan_tile, esrgan_tile_overlap, hires_steps, hires_denoising_strength,
|
412 |
-
hires_sampler, hires_schedule_type, hires_guidance_scale, hires_prompt, hires_negative_prompt,
|
413 |
-
adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a,
|
414 |
-
prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a,
|
415 |
-
mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b,
|
416 |
-
face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b,
|
417 |
-
active_textual_inversion, gpu_duration, auto_trans, recom_prompt],
|
418 |
-
outputs=[result],
|
419 |
-
queue=False,
|
420 |
-
show_api=True,
|
421 |
-
api_name="infer_translate",
|
422 |
-
).success(
|
423 |
-
fn=dolphin_respond_auto,
|
424 |
-
inputs=[prompt, chatbot, chat_model, chat_sysmsg, chat_tokens, chat_temperature, chat_topp, chat_topk, chat_rp, state],
|
425 |
-
outputs=[chatbot, result, prompt],
|
426 |
-
queue=True,
|
427 |
-
show_progress="full",
|
428 |
-
show_api=False,
|
429 |
-
).success(
|
430 |
-
fn=dolphin_parse_simple,
|
431 |
-
inputs=[prompt, chatbot, state],
|
432 |
-
outputs=[prompt],
|
433 |
-
queue=False,
|
434 |
-
show_api=False,
|
435 |
-
).success(
|
436 |
-
fn=infer,
|
437 |
-
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
438 |
-
guidance_scale, num_inference_steps, model_name,
|
439 |
-
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt,
|
440 |
-
lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, task, prompt_syntax,
|
441 |
-
sampler, vae_model, schedule_type, schedule_prediction_type,
|
442 |
-
clip_skip, pag_scale, free_u, guidance_rescale,
|
443 |
-
image_control, image_mask, strength, image_resolution,
|
444 |
-
controlnet_model, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold,
|
445 |
-
preprocessor_name, preprocess_resolution, low_threshold, high_threshold,
|
446 |
-
value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma,
|
447 |
-
image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1,
|
448 |
-
image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2,
|
449 |
-
upscaler_model_path, upscaler_increases_size, esrgan_tile, esrgan_tile_overlap, hires_steps, hires_denoising_strength,
|
450 |
-
hires_sampler, hires_schedule_type, hires_guidance_scale, hires_prompt, hires_negative_prompt,
|
451 |
-
adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a,
|
452 |
-
prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a,
|
453 |
-
mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b,
|
454 |
-
face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b,
|
455 |
-
active_textual_inversion, gpu_duration, auto_trans, recom_prompt],
|
456 |
-
outputs=[result],
|
457 |
-
queue=True,
|
458 |
-
show_progress="full",
|
459 |
-
show_api=False,
|
460 |
-
).success(lambda: None, None, chatbot, queue=False, show_api=False)\
|
461 |
-
.success(pass_result, [result], [result], queue=False, show_api=False) # dummy fn for api
|
462 |
-
|
463 |
-
result.change(save_image_history, [result, history_gallery, history_files, model_name], [history_gallery, history_files], queue=False, show_api=False)
|
464 |
-
|
465 |
-
gr.on(
|
466 |
-
triggers=[lora1.change, lora1_wt.change, lora2.change, lora2_wt.change, lora3.change, lora3_wt.change,
|
467 |
-
lora4.change, lora4_wt.change, lora5.change, lora5_wt.change, lora6.change, lora6_wt.change, lora7.change, lora7_wt.change, prompt_syntax.change],
|
468 |
-
fn=update_loras,
|
469 |
-
inputs=[prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt],
|
470 |
-
outputs=[prompt, lora1, lora1_wt, lora1_info, lora1_copy, lora1_md,
|
471 |
-
lora2, lora2_wt, lora2_info, lora2_copy, lora2_md, lora3, lora3_wt, lora3_info, lora3_copy, lora3_md,
|
472 |
-
lora4, lora4_wt, lora4_info, lora4_copy, lora4_md, lora5, lora5_wt, lora5_info, lora5_copy, lora5_md,
|
473 |
-
lora6, lora6_wt, lora6_info, lora6_copy, lora6_md, lora7, lora7_wt, lora7_info, lora7_copy, lora7_md],
|
474 |
-
queue=False,
|
475 |
-
trigger_mode="once",
|
476 |
-
show_api=False,
|
477 |
-
)
|
478 |
-
lora1_copy.click(apply_lora_prompt, [prompt, lora1_info], [prompt], queue=False, show_api=False)
|
479 |
-
lora2_copy.click(apply_lora_prompt, [prompt, lora2_info], [prompt], queue=False, show_api=False)
|
480 |
-
lora3_copy.click(apply_lora_prompt, [prompt, lora3_info], [prompt], queue=False, show_api=False)
|
481 |
-
lora4_copy.click(apply_lora_prompt, [prompt, lora4_info], [prompt], queue=False, show_api=False)
|
482 |
-
lora5_copy.click(apply_lora_prompt, [prompt, lora5_info], [prompt], queue=False, show_api=False)
|
483 |
-
lora6_copy.click(apply_lora_prompt, [prompt, lora6_info], [prompt], queue=False, show_api=False)
|
484 |
-
lora7_copy.click(apply_lora_prompt, [prompt, lora7_info], [prompt], queue=False, show_api=False)
|
485 |
-
|
486 |
-
gr.on(
|
487 |
-
triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
|
488 |
-
fn=search_civitai_lora,
|
489 |
-
inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period, lora_search_civitai_tag, lora_search_civitai_user, lora_search_civitai_gallery],
|
490 |
-
outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query, lora_search_civitai_gallery],
|
491 |
-
scroll_to_output=True,
|
492 |
-
queue=True,
|
493 |
-
show_api=False,
|
494 |
-
)
|
495 |
-
lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True) # fn for api
|
496 |
-
lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
|
497 |
-
gr.on(
|
498 |
-
triggers=[lora_download.click, lora_download_url.submit],
|
499 |
-
fn=download_my_lora,
|
500 |
-
inputs=[lora_download_url, lora1, lora2, lora3, lora4, lora5, lora6, lora7],
|
501 |
-
outputs=[lora1, lora2, lora3, lora4, lora5, lora6, lora7],
|
502 |
-
scroll_to_output=True,
|
503 |
-
queue=True,
|
504 |
-
show_api=False,
|
505 |
-
)
|
506 |
-
lora_search_civitai_gallery.select(update_civitai_selection, None, [lora_search_civitai_result], queue=False, show_api=False)
|
507 |
-
|
508 |
-
#recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
|
509 |
-
gr.on(
|
510 |
-
triggers=[quality_selector.change, style_selector.change],
|
511 |
-
fn=process_style_prompt,
|
512 |
-
inputs=[prompt, negative_prompt, style_selector, quality_selector],
|
513 |
-
outputs=[prompt, negative_prompt],
|
514 |
-
queue=False,
|
515 |
-
trigger_mode="once",
|
516 |
-
show_api=False,
|
517 |
-
)
|
518 |
-
|
519 |
-
model_detail.change(enable_diffusers_model_detail, [model_detail, model_name, state], [model_detail, model_name, state], queue=False, show_api=False)
|
520 |
-
model_name.change(get_t2i_model_info, [model_name], [model_info], queue=False, show_api=False)
|
521 |
-
|
522 |
-
chat_model.change(select_dolphin_model, [chat_model, state], [chat_model, chat_format, chat_model_info, state], queue=True, show_progress="full", show_api=False)\
|
523 |
-
.success(lambda: None, None, chatbot, queue=False, show_api=False)
|
524 |
-
chat_format.change(select_dolphin_format, [chat_format, state], [chat_format, state], queue=False, show_api=False)\
|
525 |
-
.success(lambda: None, None, chatbot, queue=False, show_api=False)
|
526 |
-
|
527 |
-
# Tagger
|
528 |
-
with gr.Tab("Tags Transformer with Tagger"):
|
529 |
-
with gr.Column():
|
530 |
-
with gr.Group():
|
531 |
-
input_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
|
532 |
-
with gr.Accordion(label="Advanced options", open=False):
|
533 |
-
general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
|
534 |
-
character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
|
535 |
-
input_tag_type = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
|
536 |
-
recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
|
537 |
-
image_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
|
538 |
-
keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
|
539 |
-
generate_from_image_btn = gr.Button(value="GENERATE TAGS FROM IMAGE", size="lg", variant="primary")
|
540 |
-
with gr.Group():
|
541 |
-
with gr.Row():
|
542 |
-
input_character = gr.Textbox(label="Character tags", placeholder="hatsune miku")
|
543 |
-
input_copyright = gr.Textbox(label="Copyright tags", placeholder="vocaloid")
|
544 |
-
random_character = gr.Button(value="Random character 🎲", size="sm")
|
545 |
-
input_general = gr.TextArea(label="General tags", lines=4, placeholder="1girl, ...", value="")
|
546 |
-
input_tags_to_copy = gr.Textbox(value="", visible=False)
|
547 |
with gr.Row():
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
with gr.Row():
|
564 |
with gr.Group():
|
565 |
-
output_text = gr.TextArea(label="Output tags", interactive=False, show_copy_button=True)
|
566 |
with gr.Row():
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
with gr.Row():
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
convert_danbooru_to_e621_prompt, [input_general, input_tag_type], [input_general], queue=False, show_api=False,
|
594 |
-
).success(
|
595 |
-
insert_recom_prompt, [input_general, dummy_np, recom_prompt], [input_general, dummy_np], queue=False, show_api=False,
|
596 |
-
).success(lambda: gr.update(interactive=True), None, [copy_prompt_btn_input], queue=False, show_api=False)
|
597 |
-
copy_input_btn.click(compose_prompt_to_copy, [input_character, input_copyright, input_general], [input_tags_to_copy], show_api=False)\
|
598 |
-
.success(gradio_copy_text, [input_tags_to_copy], js=COPY_ACTION_JS, show_api=False)
|
599 |
-
copy_prompt_btn_input.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy], show_api=False)\
|
600 |
-
.success(gradio_copy_prompt, inputs=[input_tags_to_copy], outputs=[prompt], show_api=False)
|
601 |
-
|
602 |
-
generate_btn.click(
|
603 |
-
v2_upsampling_prompt,
|
604 |
-
[model_name, input_copyright, input_character, input_general,
|
605 |
-
input_rating, input_aspect_ratio, input_length, input_identity, input_ban_tags],
|
606 |
-
[output_text],
|
607 |
-
show_api=False,
|
608 |
-
).success(
|
609 |
-
convert_danbooru_to_e621_prompt, [output_text, tag_type], [output_text_pony], queue=False, show_api=False,
|
610 |
-
).success(
|
611 |
-
insert_recom_prompt, [output_text, dummy_np, recom_animagine], [output_text, dummy_np], queue=False, show_api=False,
|
612 |
-
).success(
|
613 |
-
insert_recom_prompt, [output_text_pony, dummy_np, recom_pony], [output_text_pony, dummy_np], queue=False, show_api=False,
|
614 |
-
).success(lambda: (gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)),
|
615 |
-
None, [copy_btn, copy_btn_pony, copy_prompt_btn, copy_prompt_btn_pony], queue=False, show_api=False)
|
616 |
-
copy_btn.click(gradio_copy_text, [output_text], js=COPY_ACTION_JS, show_api=False)
|
617 |
-
copy_btn_pony.click(gradio_copy_text, [output_text_pony], js=COPY_ACTION_JS, show_api=False)
|
618 |
-
copy_prompt_btn.click(gradio_copy_prompt, inputs=[output_text], outputs=[prompt], show_api=False)
|
619 |
-
copy_prompt_btn_pony.click(gradio_copy_prompt, inputs=[output_text_pony], outputs=[prompt], show_api=False)
|
620 |
-
|
621 |
-
with gr.Tab("PNG Info"):
|
622 |
-
with gr.Row():
|
623 |
-
with gr.Column():
|
624 |
-
image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])
|
625 |
-
|
626 |
-
with gr.Column():
|
627 |
-
result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)
|
628 |
-
|
629 |
-
image_metadata.change(
|
630 |
-
fn=extract_exif_data,
|
631 |
-
inputs=[image_metadata],
|
632 |
-
outputs=[result_metadata],
|
633 |
-
)
|
634 |
-
|
635 |
-
with gr.Tab("Upscaler"):
|
636 |
-
with gr.Row():
|
637 |
-
with gr.Column():
|
638 |
-
image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"])
|
639 |
-
upscaler_tab = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS[9:], value=UPSCALER_KEYS[11])
|
640 |
-
upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by")
|
641 |
-
generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary")
|
642 |
-
|
643 |
-
with gr.Column():
|
644 |
-
result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png")
|
645 |
-
|
646 |
-
generate_button_up_tab.click(
|
647 |
-
fn=esrgan_upscale,
|
648 |
-
inputs=[image_up_tab, upscaler_tab, upscaler_size_tab],
|
649 |
-
outputs=[result_up_tab],
|
650 |
-
)
|
651 |
-
|
652 |
-
with gr.Tab("Preprocessor", render=True):
|
653 |
-
preprocessor_tab()
|
654 |
-
|
655 |
-
gr.LoginButton()
|
656 |
-
gr.DuplicateButton(value="Duplicate Space for private use (This demo does not work on CPU. Requires GPU Space)")
|
657 |
|
658 |
demo.queue()
|
659 |
-
demo.launch(
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
+
from pathlib import Path
|
4 |
+
import re
|
5 |
+
import os
|
6 |
+
import tempfile
|
7 |
+
import shutil
|
8 |
+
import urllib
|
9 |
+
from huggingface_hub import whoami, HfApi, hf_hub_download, RepoCard
|
10 |
+
from huggingface_hub.utils import build_hf_headers, hf_raise_for_status
|
11 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
12 |
+
|
13 |
+
ENDPOINT = "https://huggingface.co"
|
14 |
+
# ENDPOINT = "http://localhost:5564"
|
15 |
+
|
16 |
+
REPO_TYPES = ["model", "dataset", "space"]
|
17 |
+
HF_REPO = os.environ.get("HF_REPO") if os.environ.get("HF_REPO") else "" # set your default repo
|
18 |
+
HF_REPO_PREFIX = os.environ.get("HF_REPO_PREFIX") if os.environ.get("HF_REPO_PREFIX") else "" # set your default repo prefix
|
19 |
+
HF_REPO_SUFFIX = os.environ.get("HF_REPO_SUFFIX") if os.environ.get("HF_REPO_SUFFIX") else "" # set your default repo suffix
|
20 |
+
HF_USER = os.environ.get("HF_USER") if os.environ.get("HF_USER") else "" # set your username
|
21 |
+
REGEX_HF_REPO = r'^[\w_\-\.]+/[\w_\-\.]+$'
|
22 |
+
|
23 |
+
def remove_repo_tags(repo_id: str, tags: list[str], repo_type: str, hf_token: str):
|
24 |
+
try:
|
25 |
+
card = RepoCard.load(repo_id, repo_type=repo_type, token=hf_token)
|
26 |
+
orig_content = card.content
|
27 |
+
for tag in tags:
|
28 |
+
if 'tags' in card.data and tag in card.data['tags']: card.data['tags'].remove(tag)
|
29 |
+
if card.content == orig_content: return
|
30 |
+
card.push_to_hub(repo_id=repo_id, repo_type=repo_type, token=hf_token)
|
31 |
+
except Exception as e:
|
32 |
+
print(f"Failed to remove tags from repocard. {e}")
|
33 |
+
|
34 |
+
def duplicate(source_repo, dst_repo, repo_type, private, overwrite, auto_dir, remove_tag, oauth_token: gr.OAuthToken | None, progress=gr.Progress(track_tqdm=True)):
|
35 |
+
hf_token = oauth_token.token
|
36 |
+
api = HfApi(token=hf_token)
|
37 |
+
try:
|
38 |
+
if not repo_type in REPO_TYPES:
|
39 |
+
raise ValueError("need to select valid repo type")
|
40 |
+
_ = whoami(oauth_token.token)
|
41 |
+
# ^ this will throw if token is invalid
|
42 |
+
except Exception as e:
|
43 |
+
raise gr.Error(f"""Oops, you forgot to login. Please use the loggin button on the top left to migrate your repo {e}""")
|
44 |
+
|
45 |
+
try:
|
46 |
+
if re.fullmatch(REGEX_HF_REPO, source_repo): target = ""
|
47 |
+
else:
|
48 |
+
source_repo, target = re.findall(r'^(?:http.+\.co/)?(?:datasets)?(?:spaces)?([\w_\-\.]+/[\w_\-\.]+)/?(?:blob/main/)?(?:resolve/main/)?(.+)?$', source_repo)[0]
|
49 |
+
target = urllib.parse.unquote(target.removesuffix("/"))
|
50 |
+
|
51 |
+
if re.fullmatch(REGEX_HF_REPO, dst_repo): subfolder = ""
|
52 |
+
else:
|
53 |
+
dst_repo, subfolder = re.findall(r'^([\w_\-\.]+/[\w_\-\.]+)/?(.+)?$', dst_repo)[0]
|
54 |
+
subfolder = subfolder.removesuffix("/")
|
55 |
+
if auto_dir: subfolder = source_repo
|
56 |
+
|
57 |
+
if not overwrite and api.repo_exists(repo_id=dst_repo, repo_type=repo_type, token=hf_token): raise gr.Error(f"Repo already exists {dst_repo}")
|
58 |
+
|
59 |
+
if overwrite or subfolder:
|
60 |
+
temp_dir = tempfile.mkdtemp()
|
61 |
+
api.create_repo(repo_id=dst_repo, repo_type=repo_type, private=private, exist_ok=True, token=hf_token)
|
62 |
+
for path in api.list_repo_files(repo_id=source_repo, repo_type=repo_type, token=hf_token):
|
63 |
+
if target and target not in path: continue
|
64 |
+
file = hf_hub_download(repo_id=source_repo, filename=path, repo_type=repo_type, local_dir=temp_dir, token=hf_token)
|
65 |
+
if not Path(file).exists(): continue
|
66 |
+
if Path(file).is_dir(): # unused for now
|
67 |
+
api.upload_folder(repo_id=dst_repo, folder_path=file, path_in_repo=f"{subfolder}/{path}" if subfolder else path, repo_type=repo_type, token=hf_token)
|
68 |
+
elif Path(file).is_file():
|
69 |
+
api.upload_file(repo_id=dst_repo, path_or_fileobj=file, path_in_repo=f"{subfolder}/{path}" if subfolder else path, repo_type=repo_type, token=hf_token)
|
70 |
+
if Path(file).exists(): Path(file).unlink()
|
71 |
+
if repo_type == "dataset": repo_url = f"https://huggingface.co/datasets/{dst_repo}"
|
72 |
+
elif repo_type == "space": repo_url = f"https://huggingface.co/spaces/{dst_repo}"
|
73 |
+
else: repo_url = f"https://huggingface.co/{dst_repo}"
|
74 |
+
shutil.rmtree(temp_dir)
|
75 |
+
else:
|
76 |
+
r = requests.post(
|
77 |
+
f"{ENDPOINT}/api/{repo_type}s/{source_repo}/duplicate",
|
78 |
+
headers=build_hf_headers(token=oauth_token.token),
|
79 |
+
json={"repository": dst_repo, "private": private},
|
80 |
+
)
|
81 |
+
hf_raise_for_status(r)
|
82 |
+
|
83 |
+
repo_url = r.json().get("url")
|
84 |
+
|
85 |
+
if remove_tag: remove_repo_tags(dst_repo, ["not-for-all-audiences"], repo_type, hf_token)
|
86 |
+
|
87 |
+
return (
|
88 |
+
f'Find your repo <a href=\'{repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
89 |
+
"sp.jpg",
|
90 |
+
)
|
91 |
|
92 |
+
except Exception as e:
|
93 |
+
print(e)
|
94 |
+
raise gr.Error(f"Error occured: {e}")
|
95 |
+
|
96 |
+
def parse_repos(s):
|
97 |
+
repo_pattern = r'[^\w_\-\.]?([\w_\-\.]+/[\w_\-\.]+)[^\w_\-\.]?'
|
98 |
+
try:
|
99 |
+
s = re.sub("https?://[\\w/:%#\\$&\\?\\(\\)~\\.=\\+\\-]+", "", s)
|
100 |
+
repos = re.findall(repo_pattern, s)
|
101 |
+
return list(repos)
|
102 |
+
except Exception:
|
103 |
+
return []
|
104 |
+
|
105 |
+
def duplicate_m2o(source_repos_str, dst_repo, repo_type, private, overwrite, oauth_token: gr.OAuthToken | None, progress=gr.Progress(track_tqdm=True)):
|
106 |
+
hf_token = oauth_token.token
|
107 |
+
api = HfApi(token=hf_token)
|
108 |
+
try:
|
109 |
+
if not repo_type in REPO_TYPES:
|
110 |
+
raise ValueError("need to select valid repo type")
|
111 |
+
_ = whoami(oauth_token.token)
|
112 |
+
# ^ this will throw if token is invalid
|
113 |
+
except Exception as e:
|
114 |
+
raise gr.Error(f"""Oops, you forgot to login. Please use the loggin button on the top left to migrate your repo {e}""")
|
115 |
+
|
116 |
+
try:
|
117 |
+
if re.fullmatch(REGEX_HF_REPO, dst_repo): subfolder_prefix = ""
|
118 |
+
else:
|
119 |
+
dst_repo, subfolder_prefix = re.findall(r'^([\w_\-\.]+/[\w_\-\.]+)/?(.+)?$', dst_repo)[0]
|
120 |
+
subfolder_prefix = subfolder.removesuffix("/")
|
121 |
+
if not overwrite and api.repo_exists(repo_id=dst_repo, repo_type=repo_type, token=hf_token): raise gr.Error(f"Repo already exists {dst_repo}")
|
122 |
+
source_repos = parse_repos(source_repos_str)
|
123 |
+
for source_repo in source_repos:
|
124 |
+
if re.fullmatch(REGEX_HF_REPO, source_repo): target = ""
|
125 |
+
else:
|
126 |
+
source_repo, target = re.findall(r'^(?:http.+\.co/)?(?:datasets)?(?:spaces)?([\w_\-\.]+/[\w_\-\.]+)/?(?:blob/main/)?(?:resolve/main/)?(.+)?$', source_repo)[0]
|
127 |
+
target = urllib.parse.unquote(target.removesuffix("/"))
|
128 |
+
|
129 |
+
subfolder = subfolder_prefix + "/" + source_repo if subfolder_prefix else source_repo
|
130 |
+
|
131 |
+
temp_dir = tempfile.mkdtemp()
|
132 |
+
api.create_repo(repo_id=dst_repo, repo_type=repo_type, private=private, exist_ok=True, token=hf_token)
|
133 |
+
for path in api.list_repo_files(repo_id=source_repo, repo_type=repo_type, token=hf_token):
|
134 |
+
if target and target not in path: continue
|
135 |
+
file = hf_hub_download(repo_id=source_repo, filename=path, repo_type=repo_type, local_dir=temp_dir, token=hf_token)
|
136 |
+
if not Path(file).exists(): continue
|
137 |
+
if Path(file).is_dir(): # unused for now
|
138 |
+
api.upload_folder(repo_id=dst_repo, folder_path=file, path_in_repo=f"{subfolder}/{path}" if subfolder else path, repo_type=repo_type, token=hf_token)
|
139 |
+
elif Path(file).is_file():
|
140 |
+
api.upload_file(repo_id=dst_repo, path_or_fileobj=file, path_in_repo=f"{subfolder}/{path}" if subfolder else path, repo_type=repo_type, token=hf_token)
|
141 |
+
if Path(file).exists(): Path(file).unlink()
|
142 |
+
if repo_type == "dataset": repo_url = f"https://huggingface.co/datasets/{dst_repo}"
|
143 |
+
elif repo_type == "space": repo_url = f"https://huggingface.co/spaces/{dst_repo}"
|
144 |
+
else: repo_url = f"https://huggingface.co/{dst_repo}"
|
145 |
+
shutil.rmtree(temp_dir)
|
146 |
+
|
147 |
+
return (
|
148 |
+
f'Find your repo <a href=\'{repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
149 |
+
"sp.jpg",
|
150 |
+
)
|
151 |
|
152 |
+
except Exception as e:
|
153 |
+
print(e)
|
154 |
+
raise gr.Error(f"Error occured: {e}")
|
155 |
+
|
156 |
+
def duplicate_m2m(source_repos_str, hf_user, repo_type, private, overwrite, remove_tag, repo_prefix, repo_suffix, oauth_token: gr.OAuthToken | None, progress=gr.Progress(track_tqdm=True)):
|
157 |
+
hf_token = oauth_token.token
|
158 |
+
api = HfApi(token=hf_token)
|
159 |
+
try:
|
160 |
+
if not repo_type in REPO_TYPES:
|
161 |
+
raise ValueError("need to select valid repo type")
|
162 |
+
_ = whoami(oauth_token.token)
|
163 |
+
# ^ this will throw if token is invalid
|
164 |
+
except Exception as e:
|
165 |
+
raise gr.Error(f"""Oops, you forgot to login. Please use the loggin button on the top left to migrate your repo {e}""")
|
166 |
+
|
167 |
+
try:
|
168 |
+
source_repos = parse_repos(source_repos_str)
|
169 |
+
repo_url_result = 'Find your repo '
|
170 |
+
for source_repo in source_repos:
|
171 |
+
if not re.fullmatch(REGEX_HF_REPO, source_repo) or not api.repo_exists(repo_id=source_repo, repo_type=repo_type, token=hf_token): continue
|
172 |
+
dst_repo = hf_user + "/" + repo_prefix + source_repo.split("/")[-1] + repo_suffix
|
173 |
+
if not re.fullmatch(REGEX_HF_REPO, dst_repo): continue
|
174 |
+
if not overwrite and api.repo_exists(repo_id=dst_repo, repo_type=repo_type, token=hf_token):
|
175 |
+
gr.Info(f"Repo already exists {dst_repo}")
|
176 |
+
continue
|
177 |
+
|
178 |
+
r = requests.post(
|
179 |
+
f"{ENDPOINT}/api/{repo_type}s/{source_repo}/duplicate",
|
180 |
+
headers=build_hf_headers(token=oauth_token.token),
|
181 |
+
json={"repository": dst_repo, "private": private},
|
182 |
+
)
|
183 |
+
hf_raise_for_status(r)
|
184 |
+
|
185 |
+
repo_url = r.json().get("url")
|
186 |
+
repo_url_result += f'<a href=\'{repo_url}\' target="_blank" style="text-decoration:underline">{dst_repo}</a><br>\n'
|
187 |
+
|
188 |
+
if remove_tag: remove_repo_tags(dst_repo, ["not-for-all-audiences"], repo_type, hf_token)
|
189 |
+
|
190 |
+
return (
|
191 |
+
repo_url_result,
|
192 |
+
"sp.jpg",
|
193 |
+
)
|
194 |
|
195 |
+
except Exception as e:
|
196 |
+
print(e)
|
197 |
+
raise gr.Error(f"Error occured: {e}")
|
|
|
|
|
|
|
198 |
|
199 |
+
def add_repo_text(repo_id: str, source_repos: str):
|
200 |
+
return source_repos + "\n" + repo_id if source_repos else repo_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
+
def swap_visibilty(profile: gr.OAuthProfile | None):
|
203 |
+
return gr.update(elem_classes=["main_ui_logged_in"]) if profile else gr.update(elem_classes=["main_ui_logged_out"])
|
|
|
204 |
|
205 |
+
css = '''
|
206 |
+
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
|
207 |
+
.title {text-align: center; align-items: center}
|
208 |
+
'''
|
209 |
+
with gr.Blocks(css=css) as demo:
|
210 |
+
gr.LoginButton()
|
211 |
+
with gr.Column(elem_classes="main_ui_logged_out") as main_ui:
|
212 |
+
gr.Markdown("# Duplicate your repo!", elem_classes="title")
|
213 |
+
gr.Markdown("Duplicate a Hugging Face repository! This Space is a an experimental demo.")
|
214 |
+
with gr.Tab("One to One"):
|
215 |
+
with gr.Row():
|
216 |
+
with gr.Column():
|
217 |
+
search = HuggingfaceHubSearch(
|
218 |
+
label="source_repo",
|
219 |
+
placeholder="Source repository (e.g. osanseviero/src)",
|
220 |
+
search_type=["model", "dataset", "space"],
|
221 |
+
sumbit_on_select=False,
|
222 |
+
)
|
223 |
+
with gr.Group():
|
224 |
+
dst_repo = gr.Textbox(label="dst_repo", placeholder="Destination repository (e.g. osanseviero/dst)", value=HF_REPO)
|
225 |
+
repo_type = gr.Dropdown(label="repo_type", choices=REPO_TYPES, value="model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
with gr.Row():
|
227 |
+
is_private = gr.Checkbox(label="Make new repo private?", value=True)
|
228 |
+
is_overwrite = gr.Checkbox(label="Overwrite existing repo?", value=True)
|
229 |
+
is_subdir = gr.Checkbox(label="Create subdirectories automatically?", value=True)
|
230 |
+
is_remtag = gr.Checkbox(label="Remove NFAA tag?", value=True)
|
|
|
231 |
with gr.Row():
|
232 |
+
submit_button = gr.Button("Submit", variant="primary")
|
233 |
+
clear_button = gr.Button("Clear", variant="secondary")
|
234 |
+
with gr.Column():
|
235 |
+
output_md = gr.Markdown(label="output")
|
236 |
+
output_image = gr.Image(show_label=False)
|
237 |
+
with gr.Tab("Multi to One"):
|
238 |
+
with gr.Row():
|
239 |
+
with gr.Column():
|
240 |
+
m2o_search = HuggingfaceHubSearch(
|
241 |
+
label="source_repo",
|
242 |
+
placeholder="Source repository (e.g. osanseviero/src)",
|
243 |
+
search_type=["model", "dataset", "space"],
|
244 |
+
sumbit_on_select=True,
|
245 |
+
)
|
246 |
+
m2o_source_repos = gr.Textbox(label="source_repos", placeholder="Source repositories (e.g. osanseviero/src)\n...", value="", lines=10)
|
247 |
+
with gr.Group():
|
248 |
+
m2o_dst_repo = gr.Textbox(label="dst_repo", placeholder="Destination repository (e.g. osanseviero/dst)", value=HF_REPO)
|
249 |
+
m2o_repo_type = gr.Dropdown(label="repo_type", choices=REPO_TYPES, value="model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
with gr.Row():
|
251 |
+
m2o_is_private = gr.Checkbox(label="Make new repo private?", value=True)
|
252 |
+
m2o_is_overwrite = gr.Checkbox(label="Overwrite existing repo?", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
with gr.Row():
|
254 |
+
m2o_submit_button = gr.Button("Submit", variant="primary")
|
255 |
+
m2o_clear_button = gr.Button("Clear", variant="secondary")
|
256 |
+
with gr.Column():
|
257 |
+
m2o_output_md = gr.Markdown(label="output")
|
258 |
+
m2o_output_image = gr.Image(show_label=False)
|
259 |
+
with gr.Tab("Multi to Multi"):
|
260 |
+
with gr.Row():
|
261 |
+
with gr.Column():
|
262 |
+
m2m_search = HuggingfaceHubSearch(
|
263 |
+
label="source_repo",
|
264 |
+
placeholder="Source repository (e.g. osanseviero/src)",
|
265 |
+
search_type=["model", "dataset", "space"],
|
266 |
+
sumbit_on_select=True,
|
267 |
+
)
|
268 |
+
m2m_source_repos = gr.Textbox(label="source_repos", placeholder="Source repositories (e.g. osanseviero/src)\n...", value="", lines=10)
|
|
|
269 |
with gr.Group():
|
|
|
270 |
with gr.Row():
|
271 |
+
m2m_user = gr.Textbox(label="hf_user", placeholder="Your HF username", value=HF_USER)
|
272 |
+
m2m_prefix = gr.Textbox(label="repo_prefix", value=HF_REPO_PREFIX)
|
273 |
+
m2m_suffix = gr.Textbox(label="repo_suffix", value=HF_REPO_SUFFIX)
|
274 |
+
m2m_repo_type = gr.Dropdown(label="repo_type", choices=REPO_TYPES, value="model")
|
275 |
with gr.Row():
|
276 |
+
m2m_is_private = gr.Checkbox(label="Make new repo private?", value=True)
|
277 |
+
m2m_is_overwrite = gr.Checkbox(label="Overwrite existing repo?", value=False)
|
278 |
+
m2m_is_remtag = gr.Checkbox(label="Remove NFAA tag?", value=True)
|
279 |
+
with gr.Row():
|
280 |
+
m2m_submit_button = gr.Button("Submit", variant="primary")
|
281 |
+
m2m_clear_button = gr.Button("Clear", variant="secondary")
|
282 |
+
with gr.Column():
|
283 |
+
m2m_output_md = gr.Markdown(label="output")
|
284 |
+
m2m_output_image = gr.Image(show_label=False)
|
285 |
+
demo.load(fn=swap_visibilty, outputs=main_ui)
|
286 |
+
submit_button.click(duplicate, [search, dst_repo, repo_type, is_private, is_overwrite, is_subdir, is_remtag], [output_md, output_image])
|
287 |
+
clear_button.click(lambda: ("", HF_REPO, "model", True, True, True, True), None, [search, dst_repo, repo_type, is_private, is_overwrite, is_subdir, is_remtag], queue=False)
|
288 |
+
m2o_search.submit(add_repo_text, [m2o_search, m2o_source_repos], [m2o_source_repos], queue=False)
|
289 |
+
m2o_submit_button.click(duplicate_m2o, [m2o_source_repos, m2o_dst_repo, m2o_repo_type, m2o_is_private, m2o_is_overwrite], [m2o_output_md, m2o_output_image])
|
290 |
+
m2o_clear_button.click(lambda: ("", HF_REPO, "model", True, True, ""), None,
|
291 |
+
[m2o_search, m2o_dst_repo, m2o_repo_type, m2o_is_private, m2o_is_overwrite, m2o_source_repos], queue=False)
|
292 |
+
m2m_search.submit(add_repo_text, [m2m_search, m2m_source_repos], [m2m_source_repos], queue=False)
|
293 |
+
m2m_submit_button.click(duplicate_m2m, [m2m_source_repos, m2m_user, m2m_repo_type, m2m_is_private, m2m_is_overwrite, m2m_is_remtag, m2m_prefix, m2m_suffix],
|
294 |
+
[m2m_output_md, m2m_output_image])
|
295 |
+
m2m_clear_button.click(lambda: ("", HF_USER, "model", True, False, True, "", HF_REPO_PREFIX, HF_REPO_SUFFIX), None,
|
296 |
+
[m2m_search, m2m_user, m2m_repo_type, m2m_is_private, m2m_is_overwrite, m2m_is_remtag, m2m_source_repos, m2m_prefix, m2m_suffix], queue=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
demo.queue()
|
299 |
+
demo.launch()
|