John6666's picture
Upload 4 files
3e2880a verified
raw
history blame
4.5 kB
import gradio as gr
from convert_url_to_diffusers_sd_gr import (
convert_url_to_diffusers_repo_sd,
SCHEDULER_CONFIG_MAP,
)
vaes = [
"",
"https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt",
"https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt",
]
loras = [
"",
"https://huggingface.co/SPO-Diffusion-Models/SPO-SD-v1-5_4k-p_10ep_LoRA/blob/main/spo-sd-v1-5_4k-p_10ep_lora_diffusers.safetensors",
]
schedulers = list(SCHEDULER_CONFIG_MAP.keys())
css = """"""
with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo:
gr.Markdown("# Download and convert any Stable Diffusion 1.5 / 2.0 safetensors to Diffusers and create your repo")
gr.Markdown(
f"""
- [A CLI version of this tool (without uploading-related function) is available here](https://huggingface.co/spaces/John6666/sd-to-diffusers-v2/tree/main/local).
**⚠️IMPORTANT NOTICE⚠️**<br>
From an information security standpoint, it is dangerous to expose your access token or key to others.
If you do use it, I recommend that you duplicate this space on your own account before doing so.
Keys and tokens could be set to SECRET (HF_TOKEN, CIVITAI_API_KEY) if it's placed in your own space.
It saves you the trouble of typing them in.<br>
<br>
**The steps are the following**:
- Paste a write-access token from [hf.co/settings/tokens](https://huggingface.co/settings/tokens).
- Input a model download url from the Hub or Civitai or other sites.
- If you want to download a model from Civitai, paste a Civitai API Key.
- Input your new repo name. e.g. 'yourid/newrepo'.
- Set the parameters. If not sure, just use the defaults.
- Click "Submit".
- Patiently wait until the output changes.
"""
)
with gr.Column():
dl_url = gr.Textbox(label="URL to download", placeholder="https://...", value="", max_lines=1)
repo_id = gr.Textbox(label="Your New Repo ID", placeholder="author/model", value="", max_lines=1)
hf_token = gr.Textbox(label="Your HF write token", placeholder="", value="", max_lines=1)
civitai_key = gr.Textbox(label="Your Civitai API Key (Optional)", info="If you download model from Civitai...", placeholder="", value="", max_lines=1)
is_half = gr.Checkbox(label="Half precision", value=True)
model_type = gr.Radio(label="Model type", choices=["v1", "v2"], value="v1")
sample_size = gr.Radio(label="Sample size (px)", choices=[512, 768], value=768)
ema = gr.Radio(label="Extract EMA or non-EMA?", choices=["ema", "non-ema"], value="ema")
vae = gr.Dropdown(label="VAE", choices=vaes, value="", allow_custom_value=True)
scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler")
lora1 = gr.Dropdown(label="LoRA1", choices=loras, value="", allow_custom_value=True)
lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale")
lora2 = gr.Dropdown(label="LoRA2", choices=loras, value="", allow_custom_value=True)
lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale")
lora3 = gr.Dropdown(label="LoRA3", choices=loras, value="", allow_custom_value=True)
lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale")
lora4 = gr.Dropdown(label="LoRA4", choices=loras, value="", allow_custom_value=True)
lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale")
lora5 = gr.Dropdown(label="LoRA5", choices=loras, value="", allow_custom_value=True)
lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale")
run_button = gr.Button(value="Submit")
repo_urls = gr.CheckboxGroup(visible=False, choices=[], value=None)
output_md = gr.Markdown(label="Output")
gr.DuplicateButton(value="Duplicate Space")
gr.on(
triggers=[run_button.click],
fn=convert_url_to_diffusers_repo_sd,
inputs=[dl_url, repo_id, hf_token, civitai_key, repo_urls, is_half, vae, scheduler,
lora1, lora1s, lora2, lora2s, lora3, lora3s, lora4, lora4s, lora5, lora5s,
model_type, sample_size, ema],
outputs=[repo_urls, output_md],
)
demo.queue()
demo.launch()