John6666 commited on
Commit
3e2880a
·
verified ·
1 Parent(s): 03dbf2a

Upload 4 files

Browse files
app.py CHANGED
@@ -21,6 +21,8 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo:
21
  gr.Markdown("# Download and convert any Stable Diffusion 1.5 / 2.0 safetensors to Diffusers and create your repo")
22
  gr.Markdown(
23
  f"""
 
 
24
  **⚠️IMPORTANT NOTICE⚠️**<br>
25
  From an information security standpoint, it is dangerous to expose your access token or key to others.
26
  If you do use it, I recommend that you duplicate this space on your own account before doing so.
 
21
  gr.Markdown("# Download and convert any Stable Diffusion 1.5 / 2.0 safetensors to Diffusers and create your repo")
22
  gr.Markdown(
23
  f"""
24
+ - [A CLI version of this tool (without uploading-related function) is available here](https://huggingface.co/spaces/John6666/sd-to-diffusers-v2/tree/main/local).
25
+
26
  **⚠️IMPORTANT NOTICE⚠️**<br>
27
  From an information security standpoint, it is dangerous to expose your access token or key to others.
28
  If you do use it, I recommend that you duplicate this space on your own account before doing so.
convert_url_to_diffusers_sd_gr.py CHANGED
@@ -13,7 +13,7 @@ def list_sub(a, b):
13
 
14
  def is_repo_name(s):
15
  import re
16
- return re.fullmatch(r'^[^/,\s]+?/[^/,\s]+$', s)
17
 
18
 
19
  def download_thing(directory, url, civitai_api_key="", progress=gr.Progress(track_tqdm=True)):
 
13
 
14
  def is_repo_name(s):
15
  import re
16
+ return re.fullmatch(r'^[^/\.,\s]+?/[^/\.,\s]+?$', s)
17
 
18
 
19
  def download_thing(directory, url, civitai_api_key="", progress=gr.Progress(track_tqdm=True)):
local/convert_url_to_diffusers_sd.py ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from pathlib import Path
3
+ import os
4
+ import torch
5
+ from diffusers import StableDiffusionPipeline, AutoencoderKL
6
+ # also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
7
+
8
+
9
+ def list_sub(a, b):
10
+ return [e for e in a if e not in b]
11
+
12
+
13
+ def is_repo_name(s):
14
+ import re
15
+ return re.fullmatch(r'^[^/\.,\s]+?/[^/\.,\s]+?$', s)
16
+
17
+
18
+ def download_thing(directory, url, civitai_api_key=""):
19
+ url = url.strip()
20
+ if "drive.google.com" in url:
21
+ original_dir = os.getcwd()
22
+ os.chdir(directory)
23
+ os.system(f"gdown --fuzzy {url}")
24
+ os.chdir(original_dir)
25
+ elif "huggingface.co" in url:
26
+ url = url.replace("?download=true", "")
27
+ if "/blob/" in url:
28
+ url = url.replace("/blob/", "/resolve/")
29
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
30
+ else:
31
+ os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
32
+ elif "civitai.com" in url:
33
+ if "?" in url:
34
+ url = url.split("?")[0]
35
+ if civitai_api_key:
36
+ url = url + f"?token={civitai_api_key}"
37
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
38
+ else:
39
+ print("You need an API key to download Civitai models.")
40
+ else:
41
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
42
+
43
+
44
+ def get_local_model_list(dir_path):
45
+ model_list = []
46
+ valid_extensions = ('.safetensors', '.ckpt', '.bin', '.pt', '.pth')
47
+ for file in Path(dir_path).glob("*"):
48
+ if file.suffix in valid_extensions:
49
+ file_path = str(Path(f"{dir_path}/{file.name}"))
50
+ model_list.append(file_path)
51
+ return model_list
52
+
53
+
54
+ def get_download_file(temp_dir, url, civitai_key):
55
+ if not "http" in url and is_repo_name(url) and not Path(url).exists():
56
+ print(f"Use HF Repo: {url}")
57
+ new_file = url
58
+ elif not "http" in url and Path(url).exists():
59
+ print(f"Use local file: {url}")
60
+ new_file = url
61
+ elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
62
+ print(f"File to download alreday exists: {url}")
63
+ new_file = f"{temp_dir}/{url.split('/')[-1]}"
64
+ else:
65
+ print(f"Start downloading: {url}")
66
+ before = get_local_model_list(temp_dir)
67
+ try:
68
+ download_thing(temp_dir, url.strip(), civitai_key)
69
+ except Exception:
70
+ print(f"Download failed: {url}")
71
+ return ""
72
+ after = get_local_model_list(temp_dir)
73
+ new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
74
+ if not new_file:
75
+ print(f"Download failed: {url}")
76
+ return ""
77
+ print(f"Download completed: {url}")
78
+ return new_file
79
+
80
+
81
+ from diffusers import (
82
+ DPMSolverMultistepScheduler,
83
+ DPMSolverSinglestepScheduler,
84
+ KDPM2DiscreteScheduler,
85
+ EulerDiscreteScheduler,
86
+ EulerAncestralDiscreteScheduler,
87
+ HeunDiscreteScheduler,
88
+ LMSDiscreteScheduler,
89
+ DDIMScheduler,
90
+ DEISMultistepScheduler,
91
+ UniPCMultistepScheduler,
92
+ LCMScheduler,
93
+ PNDMScheduler,
94
+ KDPM2AncestralDiscreteScheduler,
95
+ DPMSolverSDEScheduler,
96
+ EDMDPMSolverMultistepScheduler,
97
+ DDPMScheduler,
98
+ EDMEulerScheduler,
99
+ TCDScheduler,
100
+ )
101
+
102
+
103
+ SCHEDULER_CONFIG_MAP = {
104
+ "DPM++ 2M": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
105
+ "DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
106
+ "DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
107
+ "DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
108
+ "DPM++ 2S": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
109
+ "DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
110
+ "DPM++ 1S": (DPMSolverMultistepScheduler, {"solver_order": 1}),
111
+ "DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"solver_order": 1, "use_karras_sigmas": True}),
112
+ "DPM++ 3M": (DPMSolverMultistepScheduler, {"solver_order": 3}),
113
+ "DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"solver_order": 3, "use_karras_sigmas": True}),
114
+ "DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}),
115
+ "DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}),
116
+ "DPM2": (KDPM2DiscreteScheduler, {}),
117
+ "DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
118
+ "DPM2 a": (KDPM2AncestralDiscreteScheduler, {}),
119
+ "DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
120
+ "Euler": (EulerDiscreteScheduler, {}),
121
+ "Euler a": (EulerAncestralDiscreteScheduler, {}),
122
+ "Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}),
123
+ "Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}),
124
+ "Heun": (HeunDiscreteScheduler, {}),
125
+ "Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}),
126
+ "LMS": (LMSDiscreteScheduler, {}),
127
+ "LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
128
+ "DDIM": (DDIMScheduler, {}),
129
+ "DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}),
130
+ "DEIS": (DEISMultistepScheduler, {}),
131
+ "UniPC": (UniPCMultistepScheduler, {}),
132
+ "UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}),
133
+ "PNDM": (PNDMScheduler, {}),
134
+ "Euler EDM": (EDMEulerScheduler, {}),
135
+ "Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}),
136
+ "DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
137
+ "DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
138
+ "DDPM": (DDPMScheduler, {}),
139
+
140
+ "DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True}),
141
+ "DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"euler_at_final": True}),
142
+ "DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
143
+ "DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
144
+
145
+ "LCM": (LCMScheduler, {}),
146
+ "TCD": (TCDScheduler, {}),
147
+ "LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}),
148
+ "TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}),
149
+ "LCM Auto-Loader": (LCMScheduler, {}),
150
+ "TCD Auto-Loader": (TCDScheduler, {}),
151
+ }
152
+
153
+
154
+ def get_scheduler_config(name):
155
+ if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler a"]
156
+ return SCHEDULER_CONFIG_MAP[name]
157
+
158
+
159
+ def save_readme_md(dir, url):
160
+ orig_url = ""
161
+ orig_name = ""
162
+ if is_repo_name(url):
163
+ orig_name = url
164
+ orig_url = f"https://huggingface.co/{url}/"
165
+ elif "http" in url:
166
+ orig_name = url
167
+ orig_url = url
168
+ if orig_name and orig_url:
169
+ md = f"""---
170
+ license: other
171
+ tags:
172
+ - text-to-image
173
+ ---
174
+ Converted from [{orig_name}]({orig_url}).
175
+ """
176
+ else:
177
+ md = f"""---
178
+ license: other
179
+ tags:
180
+ - text-to-image
181
+ ---
182
+ """
183
+ path = str(Path(dir, "README.md"))
184
+ with open(path, mode='w', encoding="utf-8") as f:
185
+ f.write(md)
186
+
187
+
188
+ def fuse_loras(pipe, civitai_key="", lora_dict={}, temp_dir="."):
189
+ if not lora_dict or not isinstance(lora_dict, dict): return
190
+ a_list = []
191
+ w_list = []
192
+ for k, v in lora_dict.items():
193
+ new_lora_file = get_download_file(temp_dir, k, civitai_key)
194
+ if not new_lora_file or not Path(new_lora_file).exists():
195
+ print(f"LoRA not found: {k}")
196
+ continue
197
+ w_name = Path(new_lora_file).name
198
+ a_name = Path(new_lora_file).stem
199
+ pipe.load_lora_weights(new_lora_file, weight_name = w_name, adapter_name = a_name)
200
+ a_list.append(a_name)
201
+ w_list.append(v)
202
+ pipe.set_adapters(a_list, adapter_weights=w_list)
203
+ pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
204
+ pipe.unload_lora_weights()
205
+
206
+
207
+ def convert_url_to_diffusers_sd(url, civitai_key="", half=True, vae=None, scheduler="Euler", lora_dict={},
208
+ model_type="v1", sample_size=512, ema="ema"):
209
+ temp_dir = "."
210
+ new_file = get_download_file(temp_dir, url, civitai_key)
211
+ if not new_file:
212
+ print(f"Not found: {url}")
213
+ return ""
214
+ new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
215
+
216
+ extract_ema = True if ema == "ema" else False
217
+
218
+ if model_type == "v1": #
219
+ config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
220
+ elif model_type == "v2":
221
+ if sample_size == 512:
222
+ config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml"
223
+ else:
224
+ config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
225
+
226
+ pipe = None
227
+ if is_repo_name(new_file):
228
+ if half:
229
+ pipe = StableDiffusionPipeline.from_pretrained(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True, torch_dtype=torch.float16)
230
+ else:
231
+ pipe = StableDiffusionPipeline.from_pretrained(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True)
232
+ else:
233
+ if half:
234
+ pipe = StableDiffusionPipeline.from_single_file(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True, torch_dtype=torch.float16)
235
+ else:
236
+ pipe = StableDiffusionPipeline.from_single_file(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True)
237
+
238
+ new_vae_file = ""
239
+ if vae:
240
+ if is_repo_name(vae):
241
+ if half:
242
+ pipe.vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch.float16)
243
+ else:
244
+ pipe.vae = AutoencoderKL.from_pretrained(vae)
245
+ else:
246
+ new_vae_file = get_download_file(temp_dir, vae, civitai_key)
247
+ if new_vae_file and half:
248
+ pipe.vae = AutoencoderKL.from_single_file(new_vae_file, torch_dtype=torch.float16)
249
+ elif new_vae_file:
250
+ pipe.vae = AutoencoderKL.from_single_file(new_vae_file)
251
+
252
+ fuse_loras(pipe, lora_dict, temp_dir, civitai_key)
253
+
254
+ sconf = get_scheduler_config(scheduler)
255
+ pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
256
+
257
+ if half:
258
+ pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
259
+ else:
260
+ pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
261
+
262
+ if Path(new_repo_name).exists():
263
+ save_readme_md(new_repo_name, url)
264
+
265
+ return new_repo_name
266
+
267
+
268
+ if __name__ == "__main__":
269
+ parser = argparse.ArgumentParser()
270
+
271
+ parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
272
+ parser.add_argument("--half", default=True, help="Save weights in half precision.")
273
+ parser.add_argument("--model_type", default="v1", type=str, choices=["v1", "v2"], required=False, help="Extract EMA or non-EMA?")
274
+ parser.add_argument("--sample_size", default=512, type=int, choices=[512, 768], required=False, help="Sample size (px)")
275
+ parser.add_argument("--ema", default="ema", type=str, choices=["ema", "non-ema"], required=False, help="Extract EMA or non-EMA?")
276
+ parser.add_argument("--scheduler", default="Euler", type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
277
+ parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
278
+ parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
279
+ parser.add_argument("--lora1", default=None, type=str, required=False, help="URL of the LoRA to use.")
280
+ parser.add_argument("--lora1s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora1.")
281
+ parser.add_argument("--lora2", default=None, type=str, required=False, help="URL of the LoRA to use.")
282
+ parser.add_argument("--lora2s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora2.")
283
+ parser.add_argument("--lora3", default=None, type=str, required=False, help="URL of the LoRA to use.")
284
+ parser.add_argument("--lora3s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora3.")
285
+ parser.add_argument("--lora4", default=None, type=str, required=False, help="URL of the LoRA to use.")
286
+ parser.add_argument("--lora4s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora4.")
287
+ parser.add_argument("--lora5", default=None, type=str, required=False, help="URL of the LoRA to use.")
288
+ parser.add_argument("--lora5s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora5.")
289
+ parser.add_argument("--loras", default=None, type=str, required=False, help="Folder of the LoRA to use.")
290
+
291
+ args = parser.parse_args()
292
+ assert args.url is not None, "Must provide a URL!"
293
+
294
+ lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}
295
+ if None in lora_dict.keys(): del lora_dict[None]
296
+
297
+ if args.loras and Path(args.loras).exists():
298
+ for p in Path(args.loras).glob('**/*.safetensors'):
299
+ lora_dict[str(p)] = 1.0
300
+
301
+ convert_url_to_diffusers_sd(args.url, args.civitai_key, args.half, args.vae, args.scheduler, lora_dict,
302
+ args.model_type, args.sample_size, args.ema)
303
+
304
+
305
+ # Usage: python convert_url_to_diffusers_sd.py --url https://huggingface.co/Yntec/DreamPhotoGASM/blob/main/DreamPhotoGASM.safetensors
306
+ # python convert_url_to_diffusers_sd.py --url https://huggingface.co/Yntec/DreamPhotoGASM/blob/main/DreamPhotoGASM.safetensors --scheduler "Euler a"
307
+ # python convert_url_to_diffusers_sd.py --url https://huggingface.co/Yntec/DreamPhotoGASM/blob/main/DreamPhotoGASM.safetensors --loras ./loras
local/requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ huggingface_hub
2
+ safetensors
3
+ transformers
4
+ accelerate
5
+ git+https://github.com/huggingface/diffusers
6
+ pytorch_lightning
7
+ peft
8
+ aria2
9
+ gdown