JoPmt commited on
Commit
c34a592
·
1 Parent(s): ebfd81f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -4
app.py CHANGED
@@ -5,7 +5,7 @@ import numpy as np
5
  from transformers import pipeline
6
  from diffusers.utils import load_image
7
  from accelerate import Accelerator
8
- import torch, os, random
9
  from diffusers import StableDiffusionControlNetPipeline, StableDiffusionPipeline, ControlNetModel, UniPCMultistepScheduler
10
  from controlnet_aux import OpenposeDetector
11
 
@@ -126,6 +126,7 @@ def plex(mput, prompt, neg_prompt, stips, modal_id, dula, blip, blop):
126
  pipe = accelerator.prepare(pipe.to("cpu"))
127
 
128
  tilage = pope(prompt,num_inference_steps=5,height=512,width=512,generator=generator).images[0]
 
129
  cannyimage = np.array(tilage)
130
  low_threshold = 100
131
  high_threshold = 200
@@ -135,12 +136,15 @@ def plex(mput, prompt, neg_prompt, stips, modal_id, dula, blip, blop):
135
  cannyimage[:, zero_start:zero_end] = 0
136
  cannyimage = cannyimage[:, :, None]
137
  cannyimage = np.concatenate([cannyimage, cannyimage, cannyimage], axis=2)
138
- canny_image = Image.fromarray(cannyimage)
 
139
  pose_image = load_image(mput).resize((512, 512))
 
140
  openpose_image = openpose(pose_image)
141
- images = [openpose_image, canny_image]
 
142
 
143
- imoge = pipe(prompt,images,num_inference_steps=stips,negative_prompt=neg_prompt,controlnet_conditioning_scale=[blip, blop],height=512,width=512,generator=generator).images[0]
144
  return imoge
145
 
146
  iface = gr.Interface(fn=plex,inputs=[gr.Image(type="filepath"), gr.Textbox(label="prompt"), gr.Textbox(label="neg_prompt", value="monochrome, lowres, bad anatomy, worst quality, low quality"), gr.Slider(label="infer_steps", value=20, minimum=1, step=1, maximum=100), gr.Dropdown(choices=models, value=models[0], type="value", label="select a model"), gr.Dropdown(choices=sdulers, value=sdulers[0], type="value", label="schedulrs"), gr.Slider(label="condition_scale_canny", value=0.5, minimum=0.05, step=0.05, maximum=0.95), gr.Slider(label="condition_scale_pose", value=0.5, minimum=0.05, step=0.05, maximum=0.95)], outputs=gr.Image(), title="Img2Img Guided Multi-Conditioned Canny/Pose Controlnet Selectable StableDiffusion Model Demo", description="by JoPmt.")
 
5
  from transformers import pipeline
6
  from diffusers.utils import load_image
7
  from accelerate import Accelerator
8
+ import torch, os, random, gc
9
  from diffusers import StableDiffusionControlNetPipeline, StableDiffusionPipeline, ControlNetModel, UniPCMultistepScheduler
10
  from controlnet_aux import OpenposeDetector
11
 
 
126
  pipe = accelerator.prepare(pipe.to("cpu"))
127
 
128
  tilage = pope(prompt,num_inference_steps=5,height=512,width=512,generator=generator).images[0]
129
+ tilage.save('til.png', 'PNG')
130
  cannyimage = np.array(tilage)
131
  low_threshold = 100
132
  high_threshold = 200
 
136
  cannyimage[:, zero_start:zero_end] = 0
137
  cannyimage = cannyimage[:, :, None]
138
  cannyimage = np.concatenate([cannyimage, cannyimage, cannyimage], axis=2)
139
+ canny_image = Image.fromarray(cannyimage)
140
+ canny_image.save('can.png', 'PNG')
141
  pose_image = load_image(mput).resize((512, 512))
142
+ pose_image.save('./pos.png', 'PNG')
143
  openpose_image = openpose(pose_image)
144
+ openpose_image.save('./fin.png','PNG')
145
+ ##images = [openpose_image, canny_image]
146
 
147
+ imoge = pipe(prompt,[openpose_image, canny_image],num_inference_steps=stips,negative_prompt=neg_prompt,controlnet_conditioning_scale=[blip, blop],height=512,width=512,generator=generator).images[0]
148
  return imoge
149
 
150
  iface = gr.Interface(fn=plex,inputs=[gr.Image(type="filepath"), gr.Textbox(label="prompt"), gr.Textbox(label="neg_prompt", value="monochrome, lowres, bad anatomy, worst quality, low quality"), gr.Slider(label="infer_steps", value=20, minimum=1, step=1, maximum=100), gr.Dropdown(choices=models, value=models[0], type="value", label="select a model"), gr.Dropdown(choices=sdulers, value=sdulers[0], type="value", label="schedulrs"), gr.Slider(label="condition_scale_canny", value=0.5, minimum=0.05, step=0.05, maximum=0.95), gr.Slider(label="condition_scale_pose", value=0.5, minimum=0.05, step=0.05, maximum=0.95)], outputs=gr.Image(), title="Img2Img Guided Multi-Conditioned Canny/Pose Controlnet Selectable StableDiffusion Model Demo", description="by JoPmt.")