JoPmt commited on
Commit
ebfd81f
·
1 Parent(s): ae7dd9a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -121,8 +121,9 @@ def plex(mput, prompt, neg_prompt, stips, modal_id, dula, blip, blop):
121
  pope.unet.to(memory_format=torch.channels_last)
122
  pope = accelerator.prepare(pope.to("cpu"))
123
  pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(modal_id, use_safetensors=False,controlnet=controlnet, safety_checker=None,torch_dtype=torch.float32))
124
- pipe = accelerator.prepare(pipe.to("cpu"))
125
  pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
 
126
 
127
  tilage = pope(prompt,num_inference_steps=5,height=512,width=512,generator=generator).images[0]
128
  cannyimage = np.array(tilage)
@@ -139,7 +140,7 @@ def plex(mput, prompt, neg_prompt, stips, modal_id, dula, blip, blop):
139
  openpose_image = openpose(pose_image)
140
  images = [openpose_image, canny_image]
141
 
142
- imoge = pipe(prompt,images,num_inference_steps=stips,negative_prompt=neg_prompt,controlnet_conditioning_scale=[blip, blop],generator=generator).images[0]
143
  return imoge
144
 
145
  iface = gr.Interface(fn=plex,inputs=[gr.Image(type="filepath"), gr.Textbox(label="prompt"), gr.Textbox(label="neg_prompt", value="monochrome, lowres, bad anatomy, worst quality, low quality"), gr.Slider(label="infer_steps", value=20, minimum=1, step=1, maximum=100), gr.Dropdown(choices=models, value=models[0], type="value", label="select a model"), gr.Dropdown(choices=sdulers, value=sdulers[0], type="value", label="schedulrs"), gr.Slider(label="condition_scale_canny", value=0.5, minimum=0.05, step=0.05, maximum=0.95), gr.Slider(label="condition_scale_pose", value=0.5, minimum=0.05, step=0.05, maximum=0.95)], outputs=gr.Image(), title="Img2Img Guided Multi-Conditioned Canny/Pose Controlnet Selectable StableDiffusion Model Demo", description="by JoPmt.")
 
121
  pope.unet.to(memory_format=torch.channels_last)
122
  pope = accelerator.prepare(pope.to("cpu"))
123
  pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(modal_id, use_safetensors=False,controlnet=controlnet, safety_checker=None,torch_dtype=torch.float32))
124
+ pipe.unet.to(memory_format=torch.channels_last)
125
  pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
126
+ pipe = accelerator.prepare(pipe.to("cpu"))
127
 
128
  tilage = pope(prompt,num_inference_steps=5,height=512,width=512,generator=generator).images[0]
129
  cannyimage = np.array(tilage)
 
140
  openpose_image = openpose(pose_image)
141
  images = [openpose_image, canny_image]
142
 
143
+ imoge = pipe(prompt,images,num_inference_steps=stips,negative_prompt=neg_prompt,controlnet_conditioning_scale=[blip, blop],height=512,width=512,generator=generator).images[0]
144
  return imoge
145
 
146
  iface = gr.Interface(fn=plex,inputs=[gr.Image(type="filepath"), gr.Textbox(label="prompt"), gr.Textbox(label="neg_prompt", value="monochrome, lowres, bad anatomy, worst quality, low quality"), gr.Slider(label="infer_steps", value=20, minimum=1, step=1, maximum=100), gr.Dropdown(choices=models, value=models[0], type="value", label="select a model"), gr.Dropdown(choices=sdulers, value=sdulers[0], type="value", label="schedulrs"), gr.Slider(label="condition_scale_canny", value=0.5, minimum=0.05, step=0.05, maximum=0.95), gr.Slider(label="condition_scale_pose", value=0.5, minimum=0.05, step=0.05, maximum=0.95)], outputs=gr.Image(), title="Img2Img Guided Multi-Conditioned Canny/Pose Controlnet Selectable StableDiffusion Model Demo", description="by JoPmt.")