File size: 21,223 Bytes
b473cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25bc581
b473cc2
 
 
 
 
 
25bc581
 
 
 
 
 
 
 
 
 
b473cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import streamlit as st
import open_clip
import torch
from PIL import Image
import numpy as np
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
import chromadb
import logging
import io
import requests
from concurrent.futures import ThreadPoolExecutor
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
from chromadb.utils.data_loaders import ImageLoader

# ๋กœ๊น… ์„ค์ •
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class CustomFashionEmbeddingFunction:
    def __init__(self):
        self.model, _, self.preprocess = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model = self.model.to(self.device)
    
    def __call__(self, input):
        try:
            # ์ž…๋ ฅ์ด URL์ด๋‚˜ ๊ฒฝ๋กœ์ธ ๊ฒฝ์šฐ ์ฒ˜๋ฆฌ
            processed_images = []
            for img in input:
                if isinstance(img, (str, bytes)):
                    if isinstance(img, str):
                        response = requests.get(img)
                        img = Image.open(io.BytesIO(response.content)).convert('RGB')
                    else:
                        img = Image.open(io.BytesIO(img)).convert('RGB')
                elif isinstance(img, np.ndarray):
                    img = Image.fromarray(img.astype('uint8')).convert('RGB')
                
                processed_img = self.preprocess(img).unsqueeze(0).to(self.device)
                processed_images.append(processed_img)
            
            # ๋ฐฐ์น˜ ์ฒ˜๋ฆฌ
            batch = torch.cat(processed_images)
            
            # CLIP ์ž„๋ฒ ๋”ฉ ์ถ”์ถœ
            with torch.no_grad():
                clip_features = self.model.encode_image(batch)
                clip_features = clip_features.cpu().numpy()
            
            # ์ƒ‰์ƒ ํŠน์ง• ์ถ”์ถœ
            color_features_list = []
            for img in input:
                if isinstance(img, (str, bytes)):
                    if isinstance(img, str):
                        response = requests.get(img)
                        img = Image.open(io.BytesIO(response.content)).convert('RGB')
                    else:
                        img = Image.open(io.BytesIO(img)).convert('RGB')
                elif isinstance(img, np.ndarray):
                    img = Image.fromarray(img.astype('uint8')).convert('RGB')
                
                color_features = self.extract_color_histogram(img)
                color_features_list.append(color_features)
            
            # ํŠน์ง• ๊ฒฐํ•ฉ
            combined_embeddings = []
            for clip_emb, color_feat in zip(clip_features, color_features_list):
                # CLIP ์ž„๋ฒ ๋”ฉ์„ 768์ฐจ์›์œผ๋กœ ํŒจ๋”ฉ
                if clip_emb.shape[0] < 768:
                    padding = np.zeros(768 - clip_emb.shape[0])
                    clip_emb = np.concatenate([clip_emb, padding])
                else:
                    clip_emb = clip_emb[:768]  # 768์ฐจ์›์œผ๋กœ ์ž๋ฅด๊ธฐ
                
                # ์ƒ‰์ƒ ํŠน์ง•์„ 768์ฐจ์›์œผ๋กœ ํ™•์žฅ
                color_features_expanded = np.repeat(color_feat, 32)  # 24 * 32 = 768
                
                # ์ •๊ทœํ™”
                clip_emb = clip_emb / (np.linalg.norm(clip_emb) + 1e-8)
                color_features_expanded = color_features_expanded / (np.linalg.norm(color_features_expanded) + 1e-8)
                
                # ๊ฐ€์ค‘์น˜ ๊ฒฐํ•ฉ
                combined = clip_emb * 0.7 + color_features_expanded * 0.3
                combined = combined / (np.linalg.norm(combined) + 1e-8)
                
                combined_embeddings.append(combined)
            
            return np.array(combined_embeddings)
            
        except Exception as e:
            logger.error(f"Error in embedding function: {e}")
            raise

    def extract_color_histogram(self, image):
        """Extract color histogram from the image"""
        try:
            if isinstance(image, (str, bytes)):
                if isinstance(image, str):
                    response = requests.get(image)
                    image = Image.open(io.BytesIO(response.content))
                else:
                    image = Image.open(io.BytesIO(image))
            
            if not isinstance(image, np.ndarray):
                img_array = np.array(image)
            else:
                img_array = image
                
            # HSV ๋ณ€ํ™˜ ๋ฐ ํžˆ์Šคํ† ๊ทธ๋žจ ๊ณ„์‚ฐ
            img_hsv = Image.fromarray(img_array.astype('uint8')).convert('HSV')
            hsv_pixels = np.array(img_hsv)
            
            h_hist = np.histogram(hsv_pixels[:,:,0], bins=8, range=(0, 256))[0]
            s_hist = np.histogram(hsv_pixels[:,:,1], bins=8, range=(0, 256))[0]
            v_hist = np.histogram(hsv_pixels[:,:,2], bins=8, range=(0, 256))[0]
            
            # ์ •๊ทœํ™”
            h_hist = h_hist / (h_hist.sum() + 1e-8)
            s_hist = s_hist / (s_hist.sum() + 1e-8)
            v_hist = v_hist / (v_hist.sum() + 1e-8)
            
            return np.concatenate([h_hist, s_hist, v_hist])
        except Exception as e:
            logger.error(f"Color histogram extraction error: {e}")
            return np.zeros(24)

# Initialize session state
if 'image' not in st.session_state:
    st.session_state.image = None
if 'detected_items' not in st.session_state:
    st.session_state.detected_items = None
if 'selected_item_index' not in st.session_state:
    st.session_state.selected_item_index = None
if 'upload_state' not in st.session_state:
    st.session_state.upload_state = 'initial'
if 'search_clicked' not in st.session_state:
    st.session_state.search_clicked = False

# Load segmentation model
@st.cache_resource
def load_segmentation_model():
    try:
        model_name = "mattmdjaga/segformer_b2_clothes"
        image_processor = AutoImageProcessor.from_pretrained(model_name)
        model = AutoModelForSemanticSegmentation.from_pretrained(model_name)
        
        if torch.cuda.is_available():
            model = model.to('cuda')
            
        return model, image_processor
    except Exception as e:
        logger.error(f"Error loading segmentation model: {e}")
        raise

# ChromaDB ์„ค์ •
def setup_multimodal_collection():
    """๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ปฌ๋ ‰์…˜ ์„ค์ •"""
    try:
        client = chromadb.PersistentClient(path="./fashion_multimodal_db")
        embedding_function = CustomFashionEmbeddingFunction()
        data_loader = ImageLoader()
        
        # ๊ธฐ์กด ์ปฌ๋ ‰์…˜ ๊ฐ€์ ธ์˜ค๊ธฐ
        try:
            collection = client.get_collection(
                name="fashion_multimodal",
                embedding_function=embedding_function,
                data_loader=data_loader
            )
            logger.info("Successfully connected to existing clothes_multimodal collection")
            return collection
            
        except Exception as e:
            logger.error(f"Error getting existing collection: {e}")
            # ์ปฌ๋ ‰์…˜์ด ์—†๋Š” ๊ฒฝ์šฐ์—๋งŒ ์ƒˆ๋กœ ์ƒ์„ฑ
            collection = client.create_collection(
                name="clothes_multimodal",
                embedding_function=embedding_function,
                data_loader=data_loader
            )
            logger.info("Created new clothes_multimodal collection")
            return collection
        
    except Exception as e:
        logger.error(f"Error setting up multimodal collection: {e}")
        raise

def process_segmentation(image):
    """Segmentation processing"""
    try:
        model, image_processor = load_segmentation_model()
        
        # ์ด๋ฏธ์ง€ ์ „์ฒ˜๋ฆฌ
        inputs = image_processor(image, return_tensors="pt")
        
        if torch.cuda.is_available():
            inputs = {k: v.to('cuda') for k, v in inputs.items()}
        
        # ์ถ”๋ก 
        with torch.no_grad():
            outputs = model(**inputs)
        
        # ๋กœ์ง ๋ฐ ํ›„์ฒ˜๋ฆฌ
        logits = outputs.logits.cpu()
        upsampled_logits = torch.nn.functional.interpolate(
            logits,
            size=image.size[::-1],  # (height, width)
            mode="bilinear",
            align_corners=False,
        )
        
        # ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ๋งˆ์Šคํฌ ์ƒ์„ฑ
        seg_masks = upsampled_logits.argmax(dim=1).numpy()
        
        processed_items = []
        unique_labels = np.unique(seg_masks)
        
        for label_idx in unique_labels:
            if label_idx == 0:  # background
                continue
                
            mask = (seg_masks[0] == label_idx).astype(float)
            
            processed_segment = {
                'label': f"Item_{label_idx}",  # ๋ผ๋ฒจ ๋งคํ•‘์ด ํ•„์š”ํ•˜๋‹ค๋ฉด ์—ฌ๊ธฐ์„œ ์ฒ˜๋ฆฌ
                'score': 1.0,  # confidence score ๊ณ„์‚ฐ์ด ํ•„์š”ํ•˜๋‹ค๋ฉด ์ถ”๊ฐ€
                'mask': mask
            }
            
            processed_items.append(processed_segment)
            
        logger.info(f"Successfully processed {len(processed_items)} segments")
        return processed_items
        
    except Exception as e:
        logger.error(f"Segmentation error: {str(e)}")
        import traceback
        logger.error(traceback.format_exc())
        return []
    
def search_similar_items(image, mask=None, top_k=10):
    """๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๊ฒ€์ƒ‰ ์ˆ˜ํ–‰"""
    try:
        collection = setup_multimodal_collection()
        
        # ๋งˆ์Šคํฌ ์ ์šฉ
        if mask is not None:
            mask_3d = np.stack([mask] * 3, axis=-1)
            masked_image = np.array(image) * mask_3d
            query_image = Image.fromarray(masked_image.astype(np.uint8))
        else:
            query_image = image
            
        # ๊ฒ€์ƒ‰ ์ˆ˜ํ–‰
        results = collection.query(
            query_images=[np.array(query_image)],
            n_results=top_k,
            include=['metadatas', 'distances', 'embeddings']
        )
        
        if not results or 'metadatas' not in results:
            return []
            
        similar_items = []
        query_embedding = results.get('embeddings', [[]])[0]  # ์ฟผ๋ฆฌ ์ด๋ฏธ์ง€์˜ ์ž„๋ฒ ๋”ฉ
        
        for metadata, embedding in zip(results['metadatas'][0], results.get('embeddings', [[]] * len(results['metadatas'][0]))):
            # ์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ
            # ์ด๋ฏธ ์ •๊ทœํ™”๋˜์–ด ์žˆ์œผ๋ฏ€๋กœ ๋‚ด์ ๋งŒ์œผ๋กœ ์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ์Œ
            cosine_similarity = np.dot(query_embedding, embedding)
            
            # -1~1 ๋ฒ”์œ„์˜ ์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„๋ฅผ 0~100 ๋ฒ”์œ„๋กœ ๋ณ€ํ™˜
            similarity_score = ((cosine_similarity + 1) / 2) * 100
            
            item_data = metadata.copy()
            item_data['similarity_score'] = similarity_score
            similar_items.append(item_data)
            
        similar_items.sort(key=lambda x: x['similarity_score'], reverse=True)
        return similar_items
        
    except Exception as e:
        logger.error(f"Multimodal search error: {e}")
        return []

def update_db_with_multimodal():
    """DB๋ฅผ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋ฐฉ์‹์œผ๋กœ ์—…๋ฐ์ดํŠธ"""
    try:
        # ์ƒˆ ์ปฌ๋ ‰์…˜ ์ƒ์„ฑ
        collection = setup_multimodal_collection()
        
        # ๊ธฐ์กด ์ปฌ๋ ‰์…˜์—์„œ ๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ค๊ธฐ
        client = chromadb.PersistentClient(path="./clothesDB_11GmarketMusinsa")
        old_collection = client.get_collection("clothes")
        old_data = old_collection.get(include=['metadatas'])
        
        total_items = len(old_data['metadatas'])
        progress_bar = st.progress(0)
        status_text = st.empty()
        
        batch_size = 100
        successful_updates = 0
        failed_updates = 0
        
        for i in range(0, total_items, batch_size):
            batch = old_data['metadatas'][i:i + batch_size]
            
            images = []
            valid_metadatas = []
            valid_ids = []
            
            for metadata in batch:
                try:
                    if 'image_url' in metadata:
                        response = requests.get(metadata['image_url'])
                        img = Image.open(io.BytesIO(response.content)).convert('RGB')
                        images.append(np.array(img))
                        valid_metadatas.append(metadata)
                        valid_ids.append(metadata.get('id', str(hash(metadata['image_url']))))
                        successful_updates += 1
                except Exception as e:
                    logger.error(f"Error processing image: {e}")
                    failed_updates += 1
                    continue
            
            if images:
                collection.add(
                    ids=valid_ids,
                    images=images,
                    metadatas=valid_metadatas
                )
            
            # Update progress
            progress = (i + len(batch)) / total_items
            progress_bar.progress(progress)
            status_text.text(f"Processing: {i + len(batch)}/{total_items} items. "
                           f"Success: {successful_updates}, Failed: {failed_updates}")
            
        status_text.text(f"Update completed. Successfully processed: {successful_updates}, "
                        f"Failed: {failed_updates}")
        return True
        
    except Exception as e:
        logger.error(f"Multimodal DB update error: {e}")
        return False

def show_similar_items(similar_items):
    """Display similar items in a structured format with similarity scores"""
    if not similar_items:
        st.warning("No similar items found.")
        return
        
    st.subheader("Similar Items:")
    
    items_per_row = 2
    for i in range(0, len(similar_items), items_per_row):
        cols = st.columns(items_per_row)
        for j, col in enumerate(cols):
            if i + j < len(similar_items):
                item = similar_items[i + j]
                with col:
                    try:
                        if 'image_url' in item:
                            st.image(item['image_url'], use_column_width=True)
                        
                        st.markdown(f"**Similarity: {item['similarity_score']:.1f}%**")
                        
                        st.write(f"Brand: {item.get('brand', 'Unknown')}")
                        name = item.get('name', 'Unknown')
                        if len(name) > 50:
                            name = name[:47] + "..."
                        st.write(f"Name: {name}")
                        
                        price = item.get('price', 0)
                        if isinstance(price, (int, float)):
                            st.write(f"Price: {price:,}์›")
                        else:
                            st.write(f"Price: {price}")
                        
                        if 'discount' in item and item['discount']:
                            st.write(f"Discount: {item['discount']}%")
                            if 'original_price' in item:
                                st.write(f"Original: {item['original_price']:,}์›")
                        
                        st.divider()
                        
                    except Exception as e:
                        logger.error(f"Error displaying item: {e}")
                        st.error("Error displaying this item")

def process_search(image, mask, num_results):
    """์œ ์‚ฌ ์•„์ดํ…œ ๊ฒ€์ƒ‰ ์ฒ˜๋ฆฌ"""
    try:
        with st.spinner("Finding similar items..."):
            similar_items = search_similar_items(image, mask, num_results)
            
        return similar_items
    except Exception as e:
        logger.error(f"Search processing error: {e}")
        return None

def handle_file_upload():
    if st.session_state.uploaded_file is not None:
        image = Image.open(st.session_state.uploaded_file).convert('RGB')
        st.session_state.image = image
        st.session_state.upload_state = 'image_uploaded'
        st.rerun()

def handle_detection():
    if st.session_state.image is not None:
        detected_items = process_segmentation(st.session_state.image)
        st.session_state.detected_items = detected_items
        st.session_state.upload_state = 'items_detected'
        st.rerun()

def handle_search():
    st.session_state.search_clicked = True

def main():
    st.title("Fashion Search App")

    # Admin controls in sidebar
    st.sidebar.title("Admin Controls")
    if st.sidebar.checkbox("Show Admin Interface"):
        if st.sidebar.button("Update Database (Multimodal)"):
            with st.spinner("Updating database with multimodal support..."):
                success = update_db_with_multimodal()
                if success:
                    st.sidebar.success("Database updated successfully!")
                else:
                    st.sidebar.error("Failed to update database")
        st.divider()

    # ํŒŒ์ผ ์—…๋กœ๋”
    if st.session_state.upload_state == 'initial':
        uploaded_file = st.file_uploader("Upload an image", type=['png', 'jpg', 'jpeg'], 
                                       key='uploaded_file', on_change=handle_file_upload)

    # ์ด๋ฏธ์ง€๊ฐ€ ์—…๋กœ๋“œ๋œ ์ƒํƒœ
    if st.session_state.image is not None:
        st.image(st.session_state.image, caption="Uploaded Image", use_column_width=True)
        
        if st.session_state.detected_items is None:
            if st.button("Detect Items", key='detect_button', on_click=handle_detection):
                pass
        
        # ๊ฒ€์ถœ๋œ ์•„์ดํ…œ ํ‘œ์‹œ ๋ฐ ๊ฒ€์ƒ‰
        if st.session_state.detected_items is not None and len(st.session_state.detected_items) > 0:
            cols = st.columns(2)
            for idx, item in enumerate(st.session_state.detected_items):
                with cols[idx % 2]:
                    try:
                        if item.get('mask') is not None:
                            masked_img = np.array(st.session_state.image) * np.expand_dims(item['mask'], axis=2)
                            st.image(masked_img.astype(np.uint8), caption=f"Detected {item.get('label', 'Unknown')}")
                            
                        st.write(f"Item {idx + 1}: {item.get('label', 'Unknown')}")
                        score = item.get('score')
                        if score is not None and isinstance(score, (int, float)):
                            st.write(f"Confidence: {score*100:.1f}%")
                        else:
                            st.write("Confidence: N/A")
                    except Exception as e:
                        logger.error(f"Error displaying item {idx}: {str(e)}")
                        st.error(f"Error displaying item {idx}")
            
            valid_items = [i for i in range(len(st.session_state.detected_items)) 
                          if st.session_state.detected_items[i].get('mask') is not None]
            
            if not valid_items:
                st.warning("No valid items detected for search.")
                return
                
            selected_idx = st.selectbox(
                "Select item to search:",
                valid_items,
                format_func=lambda i: f"{st.session_state.detected_items[i].get('label', 'Unknown')}",
                key='item_selector'
            )
            
            search_col1, search_col2 = st.columns([1, 2])
            with search_col1:
                search_clicked = st.button("Search Similar Items", 
                                         key='search_button',
                                         type="primary")
            with search_col2:
                num_results = st.slider("Number of results:", 
                                      min_value=1, 
                                      max_value=20, 
                                      value=5,
                                      key='num_results')

            if search_clicked or st.session_state.get('search_clicked', False):
                st.session_state.search_clicked = True
                selected_item = st.session_state.detected_items[selected_idx]
                
                if selected_item.get('mask') is None:
                    st.error("Selected item has no valid mask for search.")
                    return
                
                if 'search_results' not in st.session_state:
                    similar_items = process_search(st.session_state.image, 
                                                selected_item['mask'], 
                                                num_results)
                    st.session_state.search_results = similar_items
                
                if st.session_state.search_results:
                    show_similar_items(st.session_state.search_results)
                else:
                    st.warning("No similar items found.")

    # ์ƒˆ ๊ฒ€์ƒ‰ ๋ฒ„ํŠผ
    if st.button("Start New Search", key='new_search'):
        for key in list(st.session_state.keys()):
            del st.session_state[key]
        st.rerun()

if __name__ == "__main__":
    print('์‹œ์ž‘')
    main()