Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import open_clip
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
|
7 |
+
import chromadb
|
8 |
+
import logging
|
9 |
+
import io
|
10 |
+
import requests
|
11 |
+
from concurrent.futures import ThreadPoolExecutor
|
12 |
+
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
|
13 |
+
from chromadb.utils.data_loaders import ImageLoader
|
14 |
+
|
15 |
+
# λ‘κΉ
μ€μ
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
class CustomFashionEmbeddingFunction:
|
20 |
+
def __init__(self):
|
21 |
+
self.model, _, self.preprocess = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
|
22 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
+
self.model = self.model.to(self.device)
|
24 |
+
|
25 |
+
def __call__(self, input):
|
26 |
+
try:
|
27 |
+
# μ
λ ₯μ΄ URLμ΄λ κ²½λ‘μΈ κ²½μ° μ²λ¦¬
|
28 |
+
processed_images = []
|
29 |
+
for img in input:
|
30 |
+
if isinstance(img, (str, bytes)):
|
31 |
+
if isinstance(img, str):
|
32 |
+
response = requests.get(img)
|
33 |
+
img = Image.open(io.BytesIO(response.content)).convert('RGB')
|
34 |
+
else:
|
35 |
+
img = Image.open(io.BytesIO(img)).convert('RGB')
|
36 |
+
elif isinstance(img, np.ndarray):
|
37 |
+
img = Image.fromarray(img.astype('uint8')).convert('RGB')
|
38 |
+
|
39 |
+
processed_img = self.preprocess(img).unsqueeze(0).to(self.device)
|
40 |
+
processed_images.append(processed_img)
|
41 |
+
|
42 |
+
# λ°°μΉ μ²λ¦¬
|
43 |
+
batch = torch.cat(processed_images)
|
44 |
+
|
45 |
+
# CLIP μλ² λ© μΆμΆ
|
46 |
+
with torch.no_grad():
|
47 |
+
clip_features = self.model.encode_image(batch)
|
48 |
+
clip_features = clip_features.cpu().numpy()
|
49 |
+
|
50 |
+
# μμ νΉμ§ μΆμΆ
|
51 |
+
color_features_list = []
|
52 |
+
for img in input:
|
53 |
+
if isinstance(img, (str, bytes)):
|
54 |
+
if isinstance(img, str):
|
55 |
+
response = requests.get(img)
|
56 |
+
img = Image.open(io.BytesIO(response.content)).convert('RGB')
|
57 |
+
else:
|
58 |
+
img = Image.open(io.BytesIO(img)).convert('RGB')
|
59 |
+
elif isinstance(img, np.ndarray):
|
60 |
+
img = Image.fromarray(img.astype('uint8')).convert('RGB')
|
61 |
+
|
62 |
+
color_features = self.extract_color_histogram(img)
|
63 |
+
color_features_list.append(color_features)
|
64 |
+
|
65 |
+
# νΉμ§ κ²°ν©
|
66 |
+
combined_embeddings = []
|
67 |
+
for clip_emb, color_feat in zip(clip_features, color_features_list):
|
68 |
+
# CLIP μλ² λ©μ 768μ°¨μμΌλ‘ ν¨λ©
|
69 |
+
if clip_emb.shape[0] < 768:
|
70 |
+
padding = np.zeros(768 - clip_emb.shape[0])
|
71 |
+
clip_emb = np.concatenate([clip_emb, padding])
|
72 |
+
else:
|
73 |
+
clip_emb = clip_emb[:768] # 768μ°¨μμΌλ‘ μλ₯΄κΈ°
|
74 |
+
|
75 |
+
# μμ νΉμ§μ 768μ°¨μμΌλ‘ νμ₯
|
76 |
+
color_features_expanded = np.repeat(color_feat, 32) # 24 * 32 = 768
|
77 |
+
|
78 |
+
# μ κ·ν
|
79 |
+
clip_emb = clip_emb / (np.linalg.norm(clip_emb) + 1e-8)
|
80 |
+
color_features_expanded = color_features_expanded / (np.linalg.norm(color_features_expanded) + 1e-8)
|
81 |
+
|
82 |
+
# κ°μ€μΉ κ²°ν©
|
83 |
+
combined = clip_emb * 0.7 + color_features_expanded * 0.3
|
84 |
+
combined = combined / (np.linalg.norm(combined) + 1e-8)
|
85 |
+
|
86 |
+
combined_embeddings.append(combined)
|
87 |
+
|
88 |
+
return np.array(combined_embeddings)
|
89 |
+
|
90 |
+
except Exception as e:
|
91 |
+
logger.error(f"Error in embedding function: {e}")
|
92 |
+
raise
|
93 |
+
|
94 |
+
def extract_color_histogram(self, image):
|
95 |
+
"""Extract color histogram from the image"""
|
96 |
+
try:
|
97 |
+
if isinstance(image, (str, bytes)):
|
98 |
+
if isinstance(image, str):
|
99 |
+
response = requests.get(image)
|
100 |
+
image = Image.open(io.BytesIO(response.content))
|
101 |
+
else:
|
102 |
+
image = Image.open(io.BytesIO(image))
|
103 |
+
|
104 |
+
if not isinstance(image, np.ndarray):
|
105 |
+
img_array = np.array(image)
|
106 |
+
else:
|
107 |
+
img_array = image
|
108 |
+
|
109 |
+
# HSV λ³ν λ° νμ€ν κ·Έλ¨ κ³μ°
|
110 |
+
img_hsv = Image.fromarray(img_array.astype('uint8')).convert('HSV')
|
111 |
+
hsv_pixels = np.array(img_hsv)
|
112 |
+
|
113 |
+
h_hist = np.histogram(hsv_pixels[:,:,0], bins=8, range=(0, 256))[0]
|
114 |
+
s_hist = np.histogram(hsv_pixels[:,:,1], bins=8, range=(0, 256))[0]
|
115 |
+
v_hist = np.histogram(hsv_pixels[:,:,2], bins=8, range=(0, 256))[0]
|
116 |
+
|
117 |
+
# μ οΏ½οΏ½ν
|
118 |
+
h_hist = h_hist / (h_hist.sum() + 1e-8)
|
119 |
+
s_hist = s_hist / (s_hist.sum() + 1e-8)
|
120 |
+
v_hist = v_hist / (v_hist.sum() + 1e-8)
|
121 |
+
|
122 |
+
return np.concatenate([h_hist, s_hist, v_hist])
|
123 |
+
except Exception as e:
|
124 |
+
logger.error(f"Color histogram extraction error: {e}")
|
125 |
+
return np.zeros(24)
|
126 |
+
|
127 |
+
# Initialize session state
|
128 |
+
if 'image' not in st.session_state:
|
129 |
+
st.session_state.image = None
|
130 |
+
if 'detected_items' not in st.session_state:
|
131 |
+
st.session_state.detected_items = None
|
132 |
+
if 'selected_item_index' not in st.session_state:
|
133 |
+
st.session_state.selected_item_index = None
|
134 |
+
if 'upload_state' not in st.session_state:
|
135 |
+
st.session_state.upload_state = 'initial'
|
136 |
+
if 'search_clicked' not in st.session_state:
|
137 |
+
st.session_state.search_clicked = False
|
138 |
+
|
139 |
+
# Load segmentation model
|
140 |
+
@st.cache_resource
|
141 |
+
def load_segmentation_model():
|
142 |
+
try:
|
143 |
+
model_name = "mattmdjaga/segformer_b2_clothes"
|
144 |
+
image_processor = AutoImageProcessor.from_pretrained(model_name)
|
145 |
+
model = AutoModelForSemanticSegmentation.from_pretrained(model_name)
|
146 |
+
|
147 |
+
if torch.cuda.is_available():
|
148 |
+
model = model.to('cuda')
|
149 |
+
|
150 |
+
return model, image_processor
|
151 |
+
except Exception as e:
|
152 |
+
logger.error(f"Error loading segmentation model: {e}")
|
153 |
+
raise
|
154 |
+
|
155 |
+
# ChromaDB μ€μ
|
156 |
+
def setup_multimodal_collection():
|
157 |
+
"""λ©ν°λͺ¨λ¬ 컬λ μ
μ€μ """
|
158 |
+
try:
|
159 |
+
client = chromadb.PersistentClient(path="./fashion_multimodal_db")
|
160 |
+
embedding_function = CustomFashionEmbeddingFunction()
|
161 |
+
data_loader = ImageLoader()
|
162 |
+
|
163 |
+
# κΈ°μ‘΄ 컬λ μ
κ°μ Έμ€κΈ°
|
164 |
+
try:
|
165 |
+
collection = client.get_collection(
|
166 |
+
name="fashion_multimodal",
|
167 |
+
embedding_function=embedding_function,
|
168 |
+
data_loader=data_loader
|
169 |
+
)
|
170 |
+
logger.info("Successfully connected to existing clothes_multimodal collection")
|
171 |
+
return collection
|
172 |
+
|
173 |
+
except Exception as e:
|
174 |
+
logger.error(f"Error getting existing collection: {e}")
|
175 |
+
# 컬λ μ
μ΄ μλ κ²½μ°μλ§ μλ‘ μμ±
|
176 |
+
collection = client.create_collection(
|
177 |
+
name="clothes_multimodal",
|
178 |
+
embedding_function=embedding_function,
|
179 |
+
data_loader=data_loader
|
180 |
+
)
|
181 |
+
logger.info("Created new clothes_multimodal collection")
|
182 |
+
return collection
|
183 |
+
|
184 |
+
except Exception as e:
|
185 |
+
logger.error(f"Error setting up multimodal collection: {e}")
|
186 |
+
raise
|
187 |
+
|
188 |
+
def process_segmentation(image):
|
189 |
+
"""Segmentation processing"""
|
190 |
+
try:
|
191 |
+
model, image_processor = load_segmentation_model()
|
192 |
+
|
193 |
+
# μ΄λ―Έμ§ μ μ²λ¦¬
|
194 |
+
inputs = image_processor(image, return_tensors="pt")
|
195 |
+
|
196 |
+
if torch.cuda.is_available():
|
197 |
+
inputs = {k: v.to('cuda') for k, v in inputs.items()}
|
198 |
+
|
199 |
+
# μΆλ‘
|
200 |
+
with torch.no_grad():
|
201 |
+
outputs = model(**inputs)
|
202 |
+
|
203 |
+
# λ‘μ§ λ° νμ²λ¦¬
|
204 |
+
logits = outputs.logits.cpu()
|
205 |
+
upsampled_logits = torch.nn.functional.interpolate(
|
206 |
+
logits,
|
207 |
+
size=image.size[::-1], # (height, width)
|
208 |
+
mode="bilinear",
|
209 |
+
align_corners=False,
|
210 |
+
)
|
211 |
+
|
212 |
+
# μΈκ·Έλ©ν
μ΄μ
λ§μ€ν¬ μμ±
|
213 |
+
seg_masks = upsampled_logits.argmax(dim=1).numpy()
|
214 |
+
|
215 |
+
processed_items = []
|
216 |
+
unique_labels = np.unique(seg_masks)
|
217 |
+
|
218 |
+
for label_idx in unique_labels:
|
219 |
+
if label_idx == 0: # background
|
220 |
+
continue
|
221 |
+
|
222 |
+
mask = (seg_masks[0] == label_idx).astype(float)
|
223 |
+
|
224 |
+
processed_segment = {
|
225 |
+
'label': f"Item_{label_idx}", # λΌλ²¨ 맀νμ΄ νμνλ€λ©΄ μ¬κΈ°μ μ²λ¦¬
|
226 |
+
'score': 1.0, # confidence score κ³μ°μ΄ νμνλ€λ©΄ μΆκ°
|
227 |
+
'mask': mask
|
228 |
+
}
|
229 |
+
|
230 |
+
processed_items.append(processed_segment)
|
231 |
+
|
232 |
+
logger.info(f"Successfully processed {len(processed_items)} segments")
|
233 |
+
return processed_items
|
234 |
+
|
235 |
+
except Exception as e:
|
236 |
+
logger.error(f"Segmentation error: {str(e)}")
|
237 |
+
import traceback
|
238 |
+
logger.error(traceback.format_exc())
|
239 |
+
return []
|
240 |
+
|
241 |
+
def search_similar_items(image, mask=None, top_k=10):
|
242 |
+
"""λ©ν°λͺ¨λ¬ κ²μ μν"""
|
243 |
+
try:
|
244 |
+
collection = setup_multimodal_collection()
|
245 |
+
|
246 |
+
# λ§μ€ν¬ μ μ©
|
247 |
+
if mask is not None:
|
248 |
+
mask_3d = np.stack([mask] * 3, axis=-1)
|
249 |
+
masked_image = np.array(image) * mask_3d
|
250 |
+
query_image = Image.fromarray(masked_image.astype(np.uint8))
|
251 |
+
else:
|
252 |
+
query_image = image
|
253 |
+
|
254 |
+
# κ²μ μν
|
255 |
+
results = collection.query(
|
256 |
+
query_images=[np.array(query_image)],
|
257 |
+
n_results=top_k,
|
258 |
+
include=['metadatas', 'distances']
|
259 |
+
)
|
260 |
+
|
261 |
+
if not results or 'metadatas' not in results:
|
262 |
+
return []
|
263 |
+
|
264 |
+
similar_items = []
|
265 |
+
for metadata, distance in zip(results['metadatas'][0], results['distances'][0]):
|
266 |
+
similarity_score = (1 - distance) * 100
|
267 |
+
item_data = metadata.copy()
|
268 |
+
item_data['similarity_score'] = similarity_score
|
269 |
+
similar_items.append(item_data)
|
270 |
+
|
271 |
+
similar_items.sort(key=lambda x: x['similarity_score'], reverse=True)
|
272 |
+
return similar_items
|
273 |
+
|
274 |
+
except Exception as e:
|
275 |
+
logger.error(f"Multimodal search error: {e}")
|
276 |
+
return []
|
277 |
+
|
278 |
+
def update_db_with_multimodal():
|
279 |
+
"""DBλ₯Ό λ©ν°λͺ¨λ¬ λ°©μμΌλ‘ μ
λ°μ΄νΈ"""
|
280 |
+
try:
|
281 |
+
# μ 컬λ μ
μμ±
|
282 |
+
collection = setup_multimodal_collection()
|
283 |
+
|
284 |
+
# κΈ°μ‘΄ 컬λ μ
μμ λ°μ΄ν° κ°μ Έμ€κΈ°
|
285 |
+
client = chromadb.PersistentClient(path="./clothesDB_11GmarketMusinsa")
|
286 |
+
old_collection = client.get_collection("clothes")
|
287 |
+
old_data = old_collection.get(include=['metadatas'])
|
288 |
+
|
289 |
+
total_items = len(old_data['metadatas'])
|
290 |
+
progress_bar = st.progress(0)
|
291 |
+
status_text = st.empty()
|
292 |
+
|
293 |
+
batch_size = 100
|
294 |
+
successful_updates = 0
|
295 |
+
failed_updates = 0
|
296 |
+
|
297 |
+
for i in range(0, total_items, batch_size):
|
298 |
+
batch = old_data['metadatas'][i:i + batch_size]
|
299 |
+
|
300 |
+
images = []
|
301 |
+
valid_metadatas = []
|
302 |
+
valid_ids = []
|
303 |
+
|
304 |
+
for metadata in batch:
|
305 |
+
try:
|
306 |
+
if 'image_url' in metadata:
|
307 |
+
response = requests.get(metadata['image_url'])
|
308 |
+
img = Image.open(io.BytesIO(response.content)).convert('RGB')
|
309 |
+
images.append(np.array(img))
|
310 |
+
valid_metadatas.append(metadata)
|
311 |
+
valid_ids.append(metadata.get('id', str(hash(metadata['image_url']))))
|
312 |
+
successful_updates += 1
|
313 |
+
except Exception as e:
|
314 |
+
logger.error(f"Error processing image: {e}")
|
315 |
+
failed_updates += 1
|
316 |
+
continue
|
317 |
+
|
318 |
+
if images:
|
319 |
+
collection.add(
|
320 |
+
ids=valid_ids,
|
321 |
+
images=images,
|
322 |
+
metadatas=valid_metadatas
|
323 |
+
)
|
324 |
+
|
325 |
+
# Update progress
|
326 |
+
progress = (i + len(batch)) / total_items
|
327 |
+
progress_bar.progress(progress)
|
328 |
+
status_text.text(f"Processing: {i + len(batch)}/{total_items} items. "
|
329 |
+
f"Success: {successful_updates}, Failed: {failed_updates}")
|
330 |
+
|
331 |
+
status_text.text(f"Update completed. Successfully processed: {successful_updates}, "
|
332 |
+
f"Failed: {failed_updates}")
|
333 |
+
return True
|
334 |
+
|
335 |
+
except Exception as e:
|
336 |
+
logger.error(f"Multimodal DB update error: {e}")
|
337 |
+
return False
|
338 |
+
|
339 |
+
def show_similar_items(similar_items):
|
340 |
+
"""Display similar items in a structured format with similarity scores"""
|
341 |
+
if not similar_items:
|
342 |
+
st.warning("No similar items found.")
|
343 |
+
return
|
344 |
+
|
345 |
+
st.subheader("Similar Items:")
|
346 |
+
|
347 |
+
items_per_row = 2
|
348 |
+
for i in range(0, len(similar_items), items_per_row):
|
349 |
+
cols = st.columns(items_per_row)
|
350 |
+
for j, col in enumerate(cols):
|
351 |
+
if i + j < len(similar_items):
|
352 |
+
item = similar_items[i + j]
|
353 |
+
with col:
|
354 |
+
try:
|
355 |
+
if 'image_url' in item:
|
356 |
+
st.image(item['image_url'], use_column_width=True)
|
357 |
+
|
358 |
+
st.markdown(f"**Similarity: {item['similarity_score']:.1f}%**")
|
359 |
+
|
360 |
+
st.write(f"Brand: {item.get('brand', 'Unknown')}")
|
361 |
+
name = item.get('name', 'Unknown')
|
362 |
+
if len(name) > 50:
|
363 |
+
name = name[:47] + "..."
|
364 |
+
st.write(f"Name: {name}")
|
365 |
+
|
366 |
+
price = item.get('price', 0)
|
367 |
+
if isinstance(price, (int, float)):
|
368 |
+
st.write(f"Price: {price:,}μ")
|
369 |
+
else:
|
370 |
+
st.write(f"Price: {price}")
|
371 |
+
|
372 |
+
if 'discount' in item and item['discount']:
|
373 |
+
st.write(f"Discount: {item['discount']}%")
|
374 |
+
if 'original_price' in item:
|
375 |
+
st.write(f"Original: {item['original_price']:,}μ")
|
376 |
+
|
377 |
+
st.divider()
|
378 |
+
|
379 |
+
except Exception as e:
|
380 |
+
logger.error(f"Error displaying item: {e}")
|
381 |
+
st.error("Error displaying this item")
|
382 |
+
|
383 |
+
def process_search(image, mask, num_results):
|
384 |
+
"""μ μ¬ μμ΄ν
κ²μ μ²λ¦¬"""
|
385 |
+
try:
|
386 |
+
with st.spinner("Finding similar items..."):
|
387 |
+
similar_items = search_similar_items(image, mask, num_results)
|
388 |
+
|
389 |
+
return similar_items
|
390 |
+
except Exception as e:
|
391 |
+
logger.error(f"Search processing error: {e}")
|
392 |
+
return None
|
393 |
+
|
394 |
+
def handle_file_upload():
|
395 |
+
if st.session_state.uploaded_file is not None:
|
396 |
+
image = Image.open(st.session_state.uploaded_file).convert('RGB')
|
397 |
+
st.session_state.image = image
|
398 |
+
st.session_state.upload_state = 'image_uploaded'
|
399 |
+
st.rerun()
|
400 |
+
|
401 |
+
def handle_detection():
|
402 |
+
if st.session_state.image is not None:
|
403 |
+
detected_items = process_segmentation(st.session_state.image)
|
404 |
+
st.session_state.detected_items = detected_items
|
405 |
+
st.session_state.upload_state = 'items_detected'
|
406 |
+
st.rerun()
|
407 |
+
|
408 |
+
def handle_search():
|
409 |
+
st.session_state.search_clicked = True
|
410 |
+
|
411 |
+
def main():
|
412 |
+
st.title("Fashion Search App")
|
413 |
+
|
414 |
+
# Admin controls in sidebar
|
415 |
+
st.sidebar.title("Admin Controls")
|
416 |
+
if st.sidebar.checkbox("Show Admin Interface"):
|
417 |
+
if st.sidebar.button("Update Database (Multimodal)"):
|
418 |
+
with st.spinner("Updating database with multimodal support..."):
|
419 |
+
success = update_db_with_multimodal()
|
420 |
+
if success:
|
421 |
+
st.sidebar.success("Database updated successfully!")
|
422 |
+
else:
|
423 |
+
st.sidebar.error("Failed to update database")
|
424 |
+
st.divider()
|
425 |
+
|
426 |
+
# νμΌ μ
λ‘λ
|
427 |
+
if st.session_state.upload_state == 'initial':
|
428 |
+
uploaded_file = st.file_uploader("Upload an image", type=['png', 'jpg', 'jpeg'],
|
429 |
+
key='uploaded_file', on_change=handle_file_upload)
|
430 |
+
|
431 |
+
# μ΄λ―Έμ§κ° μ
λ‘λλ μν
|
432 |
+
if st.session_state.image is not None:
|
433 |
+
st.image(st.session_state.image, caption="Uploaded Image", use_column_width=True)
|
434 |
+
|
435 |
+
if st.session_state.detected_items is None:
|
436 |
+
if st.button("Detect Items", key='detect_button', on_click=handle_detection):
|
437 |
+
pass
|
438 |
+
|
439 |
+
# κ²μΆλ μμ΄ν
νμ λ° κ²μ
|
440 |
+
if st.session_state.detected_items is not None and len(st.session_state.detected_items) > 0:
|
441 |
+
cols = st.columns(2)
|
442 |
+
for idx, item in enumerate(st.session_state.detected_items):
|
443 |
+
with cols[idx % 2]:
|
444 |
+
try:
|
445 |
+
if item.get('mask') is not None:
|
446 |
+
masked_img = np.array(st.session_state.image) * np.expand_dims(item['mask'], axis=2)
|
447 |
+
st.image(masked_img.astype(np.uint8), caption=f"Detected {item.get('label', 'Unknown')}")
|
448 |
+
|
449 |
+
st.write(f"Item {idx + 1}: {item.get('label', 'Unknown')}")
|
450 |
+
score = item.get('score')
|
451 |
+
if score is not None and isinstance(score, (int, float)):
|
452 |
+
st.write(f"Confidence: {score*100:.1f}%")
|
453 |
+
else:
|
454 |
+
st.write("Confidence: N/A")
|
455 |
+
except Exception as e:
|
456 |
+
logger.error(f"Error displaying item {idx}: {str(e)}")
|
457 |
+
st.error(f"Error displaying item {idx}")
|
458 |
+
|
459 |
+
valid_items = [i for i in range(len(st.session_state.detected_items))
|
460 |
+
if st.session_state.detected_items[i].get('mask') is not None]
|
461 |
+
|
462 |
+
if not valid_items:
|
463 |
+
st.warning("No valid items detected for search.")
|
464 |
+
return
|
465 |
+
|
466 |
+
selected_idx = st.selectbox(
|
467 |
+
"Select item to search:",
|
468 |
+
valid_items,
|
469 |
+
format_func=lambda i: f"{st.session_state.detected_items[i].get('label', 'Unknown')}",
|
470 |
+
key='item_selector'
|
471 |
+
)
|
472 |
+
|
473 |
+
search_col1, search_col2 = st.columns([1, 2])
|
474 |
+
with search_col1:
|
475 |
+
search_clicked = st.button("Search Similar Items",
|
476 |
+
key='search_button',
|
477 |
+
type="primary")
|
478 |
+
with search_col2:
|
479 |
+
num_results = st.slider("Number of results:",
|
480 |
+
min_value=1,
|
481 |
+
max_value=20,
|
482 |
+
value=5,
|
483 |
+
key='num_results')
|
484 |
+
|
485 |
+
if search_clicked or st.session_state.get('search_clicked', False):
|
486 |
+
st.session_state.search_clicked = True
|
487 |
+
selected_item = st.session_state.detected_items[selected_idx]
|
488 |
+
|
489 |
+
if selected_item.get('mask') is None:
|
490 |
+
st.error("Selected item has no valid mask for search.")
|
491 |
+
return
|
492 |
+
|
493 |
+
if 'search_results' not in st.session_state:
|
494 |
+
similar_items = process_search(st.session_state.image,
|
495 |
+
selected_item['mask'],
|
496 |
+
num_results)
|
497 |
+
st.session_state.search_results = similar_items
|
498 |
+
|
499 |
+
if st.session_state.search_results:
|
500 |
+
show_similar_items(st.session_state.search_results)
|
501 |
+
else:
|
502 |
+
st.warning("No similar items found.")
|
503 |
+
|
504 |
+
# μ κ²μ λ²νΌ
|
505 |
+
if st.button("Start New Search", key='new_search'):
|
506 |
+
for key in list(st.session_state.keys()):
|
507 |
+
del st.session_state[key]
|
508 |
+
st.rerun()
|
509 |
+
|
510 |
+
if __name__ == "__main__":
|
511 |
+
print('μμ')
|
512 |
+
main()
|