DeepFundus / resnet50_deepfundus.py
Jfink09's picture
Upload resnet50_deepfundus.py
12300c6
raw
history blame
24.1 kB
# -*- coding: utf-8 -*-
"""ResNet50_DeepFundus.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1pd56CapAEjZ8AHAW5bi0uMm6ZzJlOpDZ
"""
######################################################### Use block of code if dataset is on GitHub #######################################################
# import os
# import requests
# import zipfile
# from pathlib import Path
# # Setup path to data folder
# data_path = Path("data/")
# image_path = data_path / "deepfundus"
# # If the image folder doesn't exist, download it and prepare it...
# if image_path.is_dir():
# print(f"{image_path} directory exists.")
# else:
# print(f"Did not find {image_path} directory, creating one...")
# image_path.mkdir(parents=True, exist_ok=True)
# # Download fundus data
# with open(data_path / "deepfundus.zip", "wb") as f:
# request = requests.get("https://github.com/jfink09/DeepFundus/raw/main/deepfundus.zip")
# print("Downloading fundus data...")
# f.write(request.content)
# # Unzip fundus data
# with zipfile.ZipFile(data_path / "deepfundus.zip", "r") as zip_ref:
# print("Unzipping fundus data...")
# zip_ref.extractall(image_path)
# # Remove zip file
# os.remove(data_path / "deepfundus.zip")
######################################### Use commented out code if dataset was downloaded from GitHub ######################################################
# # Setup train and testing paths
# train_dir = image_path / "train"
# test_dir = image_path / "test"
# train_dir, test_dir
from pathlib import Path
# Setup train and testing paths
train_dir = Path("drive/MyDrive/data/train")
test_dir = Path("drive/MyDrive/data/test")
train_dir, test_dir
from torchvision import datasets, transforms
# Create simple transform
data_transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor(),
])
# Use ImageFolder to create dataset(s)
train_data = datasets.ImageFolder(root=train_dir, # target folder of images
transform=data_transform, # transforms to perform on data (images)
target_transform=None) # transforms to perform on labels (if necessary)
test_data = datasets.ImageFolder(root=test_dir,
transform=data_transform)
print(f"Train data:\n{train_data}\nTest data:\n{test_data}")
# For this notebook to run with updated APIs, we need torch 1.12+ and torchvision 0.13+
try:
import torch
import torchvision
assert int(torch.__version__.split(".")[1]) >= 12, "torch version should be 1.12+"
assert int(torchvision.__version__.split(".")[1]) >= 13, "torchvision version should be 0.13+"
print(f"torch version: {torch.__version__}")
print(f"torchvision version: {torchvision.__version__}")
except:
print(f"[INFO] torch/torchvision versions not as required, installing nightly versions.")
!pip3 install -U torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
import torch
import torchvision
print(f"torch version: {torch.__version__}")
print(f"torchvision version: {torchvision.__version__}")
# Continue with regular imports
import matplotlib.pyplot as plt
import torch
import torchvision
from torch import nn
from torchvision import transforms
# Try to get torchinfo, install it if it doesn't work
try:
from torchinfo import summary
except:
print("[INFO] Couldn't find torchinfo... installing it.")
!pip install -q torchinfo
from torchinfo import summary
# Try to import the going_modular directory, download it from GitHub if it doesn't work
try:
from going_modular.going_modular import data_setup, engine
except:
# Get the going_modular scripts
print("[INFO] Couldn't find going_modular scripts... downloading them from GitHub.")
!git clone https://github.com/jfink09/optical-funduscopic-convolutional-neural-network
!mv optical-funduscopic-convolutional-neural-network/going_modular .
!rm -rf optical-funduscopic-convolutional-neural-network
from going_modular.going_modular import data_setup, engine
# Setup device agnostic code
device = "cuda" if torch.cuda.is_available() else "cpu"
device
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
# Create a transforms pipeline manually (required for torchvision < 0.13)
manual_transforms = transforms.Compose([
transforms.Resize((224, 224)), # 1. Reshape all images to 224x224 (though some models may require different sizes)
transforms.ToTensor(), # 2. Turn image values to between 0 & 1
transforms.Normalize(mean=[0.485, 0.456, 0.406], # 3. A mean of [0.485, 0.456, 0.406] (across each colour channel)
std=[0.229, 0.224, 0.225]) # 4. A standard deviation of [0.229, 0.224, 0.225] (across each colour channel),
])
# Create training and testing DataLoaders as well as get a list of class names
train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(train_dir=train_dir,
test_dir=test_dir,
transform=manual_transforms, # resize, convert images to between 0 & 1 and normalize them
batch_size=32) # set mini-batch size to 32
train_dataloader, test_dataloader, class_names
# Get a set of pretrained model weights
weights = torchvision.models.ResNet50_Weights.DEFAULT # .DEFAULT = best available weights from pretraining on ImageNet
weights
# Get the transforms used to create our pretrained weights
auto_transforms = weights.transforms()
auto_transforms
# # Create training and testing DataLoaders as well as get a list of class names
# train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(train_dir=train_dir,
# test_dir=test_dir,
# transform=auto_transforms, # perform same data transforms on our own data as the pretrained model
# batch_size=32) # set mini-batch size to 32
# train_dataloader, test_dataloader, class_names
# OLD: Setup the model with pretrained weights and send it to the target device (this was prior to torchvision v0.13)
# model = torchvision.models.efficientnet_b0(pretrained=True).to(device) # OLD method (with pretrained=True)
# NEW: Setup the model with pretrained weights and send it to the target device (torchvision v0.13+)
weights = torchvision.models.ResNet50_Weights.DEFAULT # .DEFAULT = best available weights
model = torchvision.models.resnet50(weights=weights).to(device)
#model # uncomment to output (it's very long)
# Print a summary using torchinfo (uncomment for actual output)
summary(model=model,
input_size=(32, 3, 224, 224), # make sure this is "input_size", not "input_shape"
# col_names=["input_size"], # uncomment for smaller output
col_names=["input_size", "output_size", "num_params", "trainable"],
col_width=20,
row_settings=["var_names"]
)
# Set the manual seeds
torch.manual_seed(42)
torch.cuda.manual_seed(42)
# Get the length of class_names (one output unit for each class)
output_shape = len(class_names)
# Recreate the classifier layer and seed it to the target device
model.classifier = torch.nn.Sequential(
torch.nn.Dropout(p=0.2, inplace=True),
torch.nn.Linear(in_features=2048,
out_features=output_shape, # same number of output units as our number of classes
bias=True)).to(device)
# Define loss and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# Set the random seeds
torch.manual_seed(42)
torch.cuda.manual_seed(42)
# Start the timer
from timeit import default_timer as timer
start_time = timer()
# Setup training and save the results
results = engine.train(model=model,
train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
optimizer=optimizer,
loss_fn=loss_fn,
epochs=20,
device=device)
# End the timer and print out how long it took
end_time = timer()
print(f"[INFO] Total training time: {end_time-start_time:.3f} seconds")
# Get the plot_loss_curves() function from helper_functions.py, download the file if we don't have it
try:
from helper_functions import plot_loss_curves
except:
print("[INFO] Couldn't find helper_functions.py, downloading...")
with open("helper_functions.py", "wb") as f:
import requests
request = requests.get("https://github.com/jfink09/optical-funduscopic-convolutional-neural-network/raw/main/helper_functions.py")
f.write(request.content)
from helper_functions import plot_loss_curves
# Plot the loss curves of our model
plot_loss_curves(results)
from typing import List, Tuple
from PIL import Image
# 1. Take in a trained model, class names, image path, image size, a transform and target device
def pred_and_plot_image(model: torch.nn.Module,
image_path: str,
class_names: List[str],
image_size: Tuple[int, int] = (224, 224),
transform: torchvision.transforms = None,
device: torch.device=device):
# 2. Open image
img = Image.open(image_path)
# 3. Create transformation for image (if one doesn't exist)
if transform is not None:
image_transform = transform
else:
image_transform = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
### Predict on image ###
# 4. Make sure the model is on the target device
model.to(device)
# 5. Turn on model evaluation mode and inference mode
model.eval()
with torch.inference_mode():
# 6. Transform and add an extra dimension to image (model requires samples in [batch_size, color_channels, height, width])
transformed_image = image_transform(img).unsqueeze(dim=0)
# 7. Make a prediction on image with an extra dimension and send it to the target device
target_image_pred = model(transformed_image.to(device))
# 8. Convert logits -> prediction probabilities (using torch.softmax() for multi-class classification)
target_image_pred_probs = torch.softmax(target_image_pred, dim=1)
# 9. Convert prediction probabilities -> prediction labels
target_image_pred_label = torch.argmax(target_image_pred_probs, dim=1)
# 10. Plot image with predicted label and probability
plt.figure()
plt.imshow(img)
plt.title(f"Pred: {class_names[target_image_pred_label]} | Prob: {target_image_pred_probs.max():.3f}")
plt.axis(False);
# Get a random list of image paths from test set
import random
num_images_to_plot = 3
test_image_path_list = list(Path(test_dir).glob("*/*.jpg")) # get list all image paths from test data
test_image_path_sample = random.sample(population=test_image_path_list, # go through all of the test image paths
k=num_images_to_plot) # randomly select 'k' image paths to pred and plot
# Make predictions on and plot the images
for image_path in test_image_path_sample:
pred_and_plot_image(model=model,
image_path=image_path,
class_names=class_names,
# transform=weights.transforms(), # optionally pass in a specified transform from our pretrained model weights
image_size=(224, 224))
data_path = Path("data/")
image_path = data_path / "deepfundus"
# If the image folder doesn't exist, download it and prepare it...
if image_path.is_dir():
print(f"{image_path} directory exists.")
else:
print(f"Did not find {image_path} directory, creating one...")
image_path.mkdir(parents=True, exist_ok=True)
# Import/install Gradio
try:
import gradio as gr
except:
!pip -q install gradio
import gradio as gr
print(f"Gradio version: {gr.__version__}")
from google.colab import drive
drive.mount('/content/drive')
# Put ResNet50 on CPU
model.to("cpu")
# Check the device
next(iter(model.parameters())).device
# 1. Setup pretrained ResNet50 weights
resnet50_weights = torchvision.models.ResNet50_Weights.DEFAULT
# 2. Get ResNet50 transforms
resnet50_transforms = resnet50_weights.transforms()
# 3. Setup pretrained model
resnet50 = torchvision.models.resnet50(weights=resnet50_weights) # could also use weights="DEFAULT"
# 4. Freeze the base layers in the model (this will freeze all layers to begin with)
for param in resnet50.parameters():
param.requires_grad = True # Set to False for model's other than ResNet
# 5. Update the classifier head
resnet50.classifier = nn.Sequential(
nn.Dropout(p=0.3, inplace=True), # keep dropout layer same
nn.Linear(in_features=2048, # keep in_features same
out_features=8)) # change out_features to suit our number of classes # 4
def create_resnet50_model(num_classes:int=8, # 4
seed:int=42):
"""Creates an ResNet50 feature extractor model and transforms.
Args:
num_classes (int, optional): number of classes in the classifier head.
Defaults to 3.
seed (int, optional): random seed value. Defaults to 42.
Returns:
model (torch.nn.Module): ResNet50 feature extractor model.
transforms (torchvision.transforms): ResNet50 image transforms.
"""
# 1, 2, 3. Create ResNet50 pretrained weights, transforms and model
weights = torchvision.models.ResNet50_Weights.DEFAULT
transforms = weights.transforms()
model = torchvision.models.resnet50(weights=weights)
# 4. Freeze all layers in base model
for param in model.parameters():
param.requires_grad = True # Set to False for model's other than ResNet
# 5. Change classifier head with random seed for reproducibility
torch.manual_seed(seed)
model.classifier = nn.Sequential(
nn.Dropout(p=0.3, inplace=True),
nn.Linear(in_features=2048
, out_features=num_classes), # If using EffnetB2 in_features = 1408, EffnetB0 in_features = 1280, if ResNet50 in_features = 2048
)
return model, transforms
resnet50, resnet50_transforms = create_resnet50_model(num_classes=8, # 4
seed=42)
from torchinfo import summary
# Print ResNet50 model summary (uncomment for full output)
summary(resnet50,
input_size=(1, 3, 224, 224),
col_names=["input_size", "output_size", "num_params", "trainable"],
col_width=20,
row_settings=["var_names"])
# Setup DataLoaders
from going_modular.going_modular import data_setup
train_dataloader_resnet50, test_dataloader_resnet50, class_names = data_setup.create_dataloaders(train_dir=train_dir,
test_dir=test_dir,
transform=resnet50_transforms,
batch_size=32)
from going_modular.going_modular import engine
# Setup optimizer
optimizer = torch.optim.Adam(params=resnet50.parameters(),
lr=1e-3)
# Setup loss function
loss_fn = torch.nn.CrossEntropyLoss()
# Set seeds for reproducibility and train the model
#set_seeds()
resnet50_results = engine.train(model=resnet50,
train_dataloader=train_dataloader_resnet50,
test_dataloader=test_dataloader_resnet50,
epochs=10,
optimizer=optimizer,
loss_fn=loss_fn,
device=device)
from helper_functions import plot_loss_curves
plot_loss_curves(resnet50_results)
from going_modular.going_modular import utils
# Save the model
utils.save_model(model=resnet50,
target_dir="models",
model_name="pretrained_resnet50_feature_extractor_drappcompressed.pth")
from pathlib import Path
# Get the model size in bytes then convert to megabytes
pretrained_resnet50_model_size = Path("models/pretrained_resnet50_feature_extractor_drappcompressed.pth").stat().st_size // (1024*1024) # division converts bytes to megabytes (roughly)
print(f"Pretrained ResNet50 feature extractor model size: {pretrained_resnet50_model_size} MB")
# Count number of parameters in ResNet50
resnet50_total_params = sum(torch.numel(param) for param in resnet50.parameters())
resnet50_total_params
# Create a dictionary with EffNetB0 statistics
resnet50_stats = {"test_loss": resnet50_results["test_loss"][-1],
"test_acc": resnet50_results["test_acc"][-1],
"number_of_parameters": resnet50_total_params,
"model_size (MB)": pretrained_resnet50_model_size}
resnet50_stats
from pathlib import Path
# Get all test data paths
print(f"[INFO] Finding all filepaths ending with '.jpg' in directory: {test_dir}")
test_data_paths = list(Path(test_dir).glob("*/*.jpg"))
test_data_paths[:5]
import pathlib
import torch
from PIL import Image
from timeit import default_timer as timer
from tqdm.auto import tqdm
from typing import List, Dict
# 1. Create a function to return a list of dictionaries with sample, truth label, prediction, prediction probability and prediction time
def pred_and_store(paths: List[pathlib.Path],
model: torch.nn.Module,
transform: torchvision.transforms,
class_names: List[str],
device: str = "cuda" if torch.cuda.is_available() else "cpu") -> List[Dict]:
# 2. Create an empty list to store prediction dictionaires
pred_list = []
# 3. Loop through target paths
for path in tqdm(paths):
# 4. Create empty dictionary to store prediction information for each sample
pred_dict = {}
# 5. Get the sample path and ground truth class name
pred_dict["image_path"] = path
class_name = path.parent.stem
pred_dict["class_name"] = class_name
# 6. Start the prediction timer
start_time = timer()
# 7. Open image path
img = Image.open(path).convert('RGB')
# 8. Transform the image, add batch dimension and put image on target device
transformed_image = transform(img).unsqueeze(0).to(device)
# 9. Prepare model for inference by sending it to target device and turning on eval() mode
model.to(device)
model.eval()
# 10. Get prediction probability, predicition label and prediction class
with torch.inference_mode():
pred_logit = model(transformed_image) # perform inference on target sample
pred_prob = torch.softmax(pred_logit, dim=1) # turn logits into prediction probabilities
pred_label = torch.argmax(pred_prob, dim=1) # turn prediction probabilities into prediction label
pred_class = class_names[pred_label.cpu()] # hardcode prediction class to be on CPU
# 11. Make sure things in the dictionary are on CPU (required for inspecting predictions later on)
pred_dict["pred_prob"] = round(pred_prob.unsqueeze(0).max().cpu().item(), 4)
pred_dict["pred_class"] = pred_class
# 12. End the timer and calculate time per pred
end_time = timer()
pred_dict["time_for_pred"] = round(end_time-start_time, 4)
# 13. Does the pred match the true label?
pred_dict["correct"] = class_name == pred_class
# 14. Add the dictionary to the list of preds
pred_list.append(pred_dict)
# 15. Return list of prediction dictionaries
return pred_list
# Make predictions across test dataset with ResNet50
resnet50_test_pred_dicts = pred_and_store(paths=test_data_paths,
model=resnet50,
transform=resnet50_transforms,
class_names=class_names,
device="cpu") # make predictions on CPU
# Inspect the first 2 prediction dictionaries
resnet50_test_pred_dicts[:2]
# Turn the test_pred_dicts into a DataFrame
import pandas as pd
resnet50_test_pred_df = pd.DataFrame(resnet50_test_pred_dicts)
resnet50_test_pred_df.head()
# Check number of correct predictions
resnet50_test_pred_df.correct.value_counts()
# Find the average time per prediction
resnet50_average_time_per_pred = round(resnet50_test_pred_df.time_for_pred.mean(), 4)
print(f"ResNet50 average time per prediction: {resnet50_average_time_per_pred} seconds")
# Add ResNet50 average prediction time to stats dictionary
resnet50_stats["time_per_pred_cpu"] = resnet50_average_time_per_pred
resnet50_stats
# Turn stat dictionaries into DataFrame
df = pd.DataFrame([resnet50_stats])
# Add column for model names
df["model"] = ["ResNet50"]
# Convert accuracy to percentages
df["test_acc"] = round(df["test_acc"] * 100, 2)
df
# Put ResNet50 on CPU
resnet50.to("cpu")
# Check the device
next(iter(resnet50.parameters())).device
from typing import Tuple, Dict
def predict(img) -> Tuple[Dict, float]:
"""Transforms and performs a prediction on img and returns prediction and time taken.
"""
# Start the timer
start_time = timer()
# Transform the target image and add a batch dimension
img = resnet50_transforms(img).unsqueeze(0)
# Put model into evaluation mode and turn on inference mode
resnet50.eval()
with torch.inference_mode():
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
pred_probs = torch.softmax(resnet50(img), dim=1)
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
# Calculate the prediction time
pred_time = round(timer() - start_time, 5)
# Return the prediction dictionary and prediction time
return pred_labels_and_probs, pred_time
# Create a list of example inputs to our Gradio demo
example_list = [[str(filepath)] for filepath in random.sample(test_data_paths, k=4)]
example_list
import gradio as gr
# Create title, description and article strings
title = "DeepFundus 👀"
description = "A ResNet50 feature extractor computer vision model to classify retina pathology from optical funduscopic images."
article = "Created for fun."
# Create the Gradio demo
demo = gr.Interface(fn=predict, # mapping function from input to output
inputs=gr.Image(type="pil"), # what are the inputs?
outputs=[gr.Label(num_top_classes=8, label="Predictions"), # what are the outputs?
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
examples=example_list,
title=title,
description=description,
article=article)
# Launch the demo!
demo.launch(debug=False, # print errors locally?
share=True) # generate a publically shareable URL?