Spaces:
Running
Running
File size: 24,147 Bytes
12300c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
# -*- coding: utf-8 -*-
"""ResNet50_DeepFundus.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1pd56CapAEjZ8AHAW5bi0uMm6ZzJlOpDZ
"""
######################################################### Use block of code if dataset is on GitHub #######################################################
# import os
# import requests
# import zipfile
# from pathlib import Path
# # Setup path to data folder
# data_path = Path("data/")
# image_path = data_path / "deepfundus"
# # If the image folder doesn't exist, download it and prepare it...
# if image_path.is_dir():
# print(f"{image_path} directory exists.")
# else:
# print(f"Did not find {image_path} directory, creating one...")
# image_path.mkdir(parents=True, exist_ok=True)
# # Download fundus data
# with open(data_path / "deepfundus.zip", "wb") as f:
# request = requests.get("https://github.com/jfink09/DeepFundus/raw/main/deepfundus.zip")
# print("Downloading fundus data...")
# f.write(request.content)
# # Unzip fundus data
# with zipfile.ZipFile(data_path / "deepfundus.zip", "r") as zip_ref:
# print("Unzipping fundus data...")
# zip_ref.extractall(image_path)
# # Remove zip file
# os.remove(data_path / "deepfundus.zip")
######################################### Use commented out code if dataset was downloaded from GitHub ######################################################
# # Setup train and testing paths
# train_dir = image_path / "train"
# test_dir = image_path / "test"
# train_dir, test_dir
from pathlib import Path
# Setup train and testing paths
train_dir = Path("drive/MyDrive/data/train")
test_dir = Path("drive/MyDrive/data/test")
train_dir, test_dir
from torchvision import datasets, transforms
# Create simple transform
data_transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor(),
])
# Use ImageFolder to create dataset(s)
train_data = datasets.ImageFolder(root=train_dir, # target folder of images
transform=data_transform, # transforms to perform on data (images)
target_transform=None) # transforms to perform on labels (if necessary)
test_data = datasets.ImageFolder(root=test_dir,
transform=data_transform)
print(f"Train data:\n{train_data}\nTest data:\n{test_data}")
# For this notebook to run with updated APIs, we need torch 1.12+ and torchvision 0.13+
try:
import torch
import torchvision
assert int(torch.__version__.split(".")[1]) >= 12, "torch version should be 1.12+"
assert int(torchvision.__version__.split(".")[1]) >= 13, "torchvision version should be 0.13+"
print(f"torch version: {torch.__version__}")
print(f"torchvision version: {torchvision.__version__}")
except:
print(f"[INFO] torch/torchvision versions not as required, installing nightly versions.")
!pip3 install -U torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
import torch
import torchvision
print(f"torch version: {torch.__version__}")
print(f"torchvision version: {torchvision.__version__}")
# Continue with regular imports
import matplotlib.pyplot as plt
import torch
import torchvision
from torch import nn
from torchvision import transforms
# Try to get torchinfo, install it if it doesn't work
try:
from torchinfo import summary
except:
print("[INFO] Couldn't find torchinfo... installing it.")
!pip install -q torchinfo
from torchinfo import summary
# Try to import the going_modular directory, download it from GitHub if it doesn't work
try:
from going_modular.going_modular import data_setup, engine
except:
# Get the going_modular scripts
print("[INFO] Couldn't find going_modular scripts... downloading them from GitHub.")
!git clone https://github.com/jfink09/optical-funduscopic-convolutional-neural-network
!mv optical-funduscopic-convolutional-neural-network/going_modular .
!rm -rf optical-funduscopic-convolutional-neural-network
from going_modular.going_modular import data_setup, engine
# Setup device agnostic code
device = "cuda" if torch.cuda.is_available() else "cpu"
device
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
# Create a transforms pipeline manually (required for torchvision < 0.13)
manual_transforms = transforms.Compose([
transforms.Resize((224, 224)), # 1. Reshape all images to 224x224 (though some models may require different sizes)
transforms.ToTensor(), # 2. Turn image values to between 0 & 1
transforms.Normalize(mean=[0.485, 0.456, 0.406], # 3. A mean of [0.485, 0.456, 0.406] (across each colour channel)
std=[0.229, 0.224, 0.225]) # 4. A standard deviation of [0.229, 0.224, 0.225] (across each colour channel),
])
# Create training and testing DataLoaders as well as get a list of class names
train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(train_dir=train_dir,
test_dir=test_dir,
transform=manual_transforms, # resize, convert images to between 0 & 1 and normalize them
batch_size=32) # set mini-batch size to 32
train_dataloader, test_dataloader, class_names
# Get a set of pretrained model weights
weights = torchvision.models.ResNet50_Weights.DEFAULT # .DEFAULT = best available weights from pretraining on ImageNet
weights
# Get the transforms used to create our pretrained weights
auto_transforms = weights.transforms()
auto_transforms
# # Create training and testing DataLoaders as well as get a list of class names
# train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(train_dir=train_dir,
# test_dir=test_dir,
# transform=auto_transforms, # perform same data transforms on our own data as the pretrained model
# batch_size=32) # set mini-batch size to 32
# train_dataloader, test_dataloader, class_names
# OLD: Setup the model with pretrained weights and send it to the target device (this was prior to torchvision v0.13)
# model = torchvision.models.efficientnet_b0(pretrained=True).to(device) # OLD method (with pretrained=True)
# NEW: Setup the model with pretrained weights and send it to the target device (torchvision v0.13+)
weights = torchvision.models.ResNet50_Weights.DEFAULT # .DEFAULT = best available weights
model = torchvision.models.resnet50(weights=weights).to(device)
#model # uncomment to output (it's very long)
# Print a summary using torchinfo (uncomment for actual output)
summary(model=model,
input_size=(32, 3, 224, 224), # make sure this is "input_size", not "input_shape"
# col_names=["input_size"], # uncomment for smaller output
col_names=["input_size", "output_size", "num_params", "trainable"],
col_width=20,
row_settings=["var_names"]
)
# Set the manual seeds
torch.manual_seed(42)
torch.cuda.manual_seed(42)
# Get the length of class_names (one output unit for each class)
output_shape = len(class_names)
# Recreate the classifier layer and seed it to the target device
model.classifier = torch.nn.Sequential(
torch.nn.Dropout(p=0.2, inplace=True),
torch.nn.Linear(in_features=2048,
out_features=output_shape, # same number of output units as our number of classes
bias=True)).to(device)
# Define loss and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# Set the random seeds
torch.manual_seed(42)
torch.cuda.manual_seed(42)
# Start the timer
from timeit import default_timer as timer
start_time = timer()
# Setup training and save the results
results = engine.train(model=model,
train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
optimizer=optimizer,
loss_fn=loss_fn,
epochs=20,
device=device)
# End the timer and print out how long it took
end_time = timer()
print(f"[INFO] Total training time: {end_time-start_time:.3f} seconds")
# Get the plot_loss_curves() function from helper_functions.py, download the file if we don't have it
try:
from helper_functions import plot_loss_curves
except:
print("[INFO] Couldn't find helper_functions.py, downloading...")
with open("helper_functions.py", "wb") as f:
import requests
request = requests.get("https://github.com/jfink09/optical-funduscopic-convolutional-neural-network/raw/main/helper_functions.py")
f.write(request.content)
from helper_functions import plot_loss_curves
# Plot the loss curves of our model
plot_loss_curves(results)
from typing import List, Tuple
from PIL import Image
# 1. Take in a trained model, class names, image path, image size, a transform and target device
def pred_and_plot_image(model: torch.nn.Module,
image_path: str,
class_names: List[str],
image_size: Tuple[int, int] = (224, 224),
transform: torchvision.transforms = None,
device: torch.device=device):
# 2. Open image
img = Image.open(image_path)
# 3. Create transformation for image (if one doesn't exist)
if transform is not None:
image_transform = transform
else:
image_transform = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
### Predict on image ###
# 4. Make sure the model is on the target device
model.to(device)
# 5. Turn on model evaluation mode and inference mode
model.eval()
with torch.inference_mode():
# 6. Transform and add an extra dimension to image (model requires samples in [batch_size, color_channels, height, width])
transformed_image = image_transform(img).unsqueeze(dim=0)
# 7. Make a prediction on image with an extra dimension and send it to the target device
target_image_pred = model(transformed_image.to(device))
# 8. Convert logits -> prediction probabilities (using torch.softmax() for multi-class classification)
target_image_pred_probs = torch.softmax(target_image_pred, dim=1)
# 9. Convert prediction probabilities -> prediction labels
target_image_pred_label = torch.argmax(target_image_pred_probs, dim=1)
# 10. Plot image with predicted label and probability
plt.figure()
plt.imshow(img)
plt.title(f"Pred: {class_names[target_image_pred_label]} | Prob: {target_image_pred_probs.max():.3f}")
plt.axis(False);
# Get a random list of image paths from test set
import random
num_images_to_plot = 3
test_image_path_list = list(Path(test_dir).glob("*/*.jpg")) # get list all image paths from test data
test_image_path_sample = random.sample(population=test_image_path_list, # go through all of the test image paths
k=num_images_to_plot) # randomly select 'k' image paths to pred and plot
# Make predictions on and plot the images
for image_path in test_image_path_sample:
pred_and_plot_image(model=model,
image_path=image_path,
class_names=class_names,
# transform=weights.transforms(), # optionally pass in a specified transform from our pretrained model weights
image_size=(224, 224))
data_path = Path("data/")
image_path = data_path / "deepfundus"
# If the image folder doesn't exist, download it and prepare it...
if image_path.is_dir():
print(f"{image_path} directory exists.")
else:
print(f"Did not find {image_path} directory, creating one...")
image_path.mkdir(parents=True, exist_ok=True)
# Import/install Gradio
try:
import gradio as gr
except:
!pip -q install gradio
import gradio as gr
print(f"Gradio version: {gr.__version__}")
from google.colab import drive
drive.mount('/content/drive')
# Put ResNet50 on CPU
model.to("cpu")
# Check the device
next(iter(model.parameters())).device
# 1. Setup pretrained ResNet50 weights
resnet50_weights = torchvision.models.ResNet50_Weights.DEFAULT
# 2. Get ResNet50 transforms
resnet50_transforms = resnet50_weights.transforms()
# 3. Setup pretrained model
resnet50 = torchvision.models.resnet50(weights=resnet50_weights) # could also use weights="DEFAULT"
# 4. Freeze the base layers in the model (this will freeze all layers to begin with)
for param in resnet50.parameters():
param.requires_grad = True # Set to False for model's other than ResNet
# 5. Update the classifier head
resnet50.classifier = nn.Sequential(
nn.Dropout(p=0.3, inplace=True), # keep dropout layer same
nn.Linear(in_features=2048, # keep in_features same
out_features=8)) # change out_features to suit our number of classes # 4
def create_resnet50_model(num_classes:int=8, # 4
seed:int=42):
"""Creates an ResNet50 feature extractor model and transforms.
Args:
num_classes (int, optional): number of classes in the classifier head.
Defaults to 3.
seed (int, optional): random seed value. Defaults to 42.
Returns:
model (torch.nn.Module): ResNet50 feature extractor model.
transforms (torchvision.transforms): ResNet50 image transforms.
"""
# 1, 2, 3. Create ResNet50 pretrained weights, transforms and model
weights = torchvision.models.ResNet50_Weights.DEFAULT
transforms = weights.transforms()
model = torchvision.models.resnet50(weights=weights)
# 4. Freeze all layers in base model
for param in model.parameters():
param.requires_grad = True # Set to False for model's other than ResNet
# 5. Change classifier head with random seed for reproducibility
torch.manual_seed(seed)
model.classifier = nn.Sequential(
nn.Dropout(p=0.3, inplace=True),
nn.Linear(in_features=2048
, out_features=num_classes), # If using EffnetB2 in_features = 1408, EffnetB0 in_features = 1280, if ResNet50 in_features = 2048
)
return model, transforms
resnet50, resnet50_transforms = create_resnet50_model(num_classes=8, # 4
seed=42)
from torchinfo import summary
# Print ResNet50 model summary (uncomment for full output)
summary(resnet50,
input_size=(1, 3, 224, 224),
col_names=["input_size", "output_size", "num_params", "trainable"],
col_width=20,
row_settings=["var_names"])
# Setup DataLoaders
from going_modular.going_modular import data_setup
train_dataloader_resnet50, test_dataloader_resnet50, class_names = data_setup.create_dataloaders(train_dir=train_dir,
test_dir=test_dir,
transform=resnet50_transforms,
batch_size=32)
from going_modular.going_modular import engine
# Setup optimizer
optimizer = torch.optim.Adam(params=resnet50.parameters(),
lr=1e-3)
# Setup loss function
loss_fn = torch.nn.CrossEntropyLoss()
# Set seeds for reproducibility and train the model
#set_seeds()
resnet50_results = engine.train(model=resnet50,
train_dataloader=train_dataloader_resnet50,
test_dataloader=test_dataloader_resnet50,
epochs=10,
optimizer=optimizer,
loss_fn=loss_fn,
device=device)
from helper_functions import plot_loss_curves
plot_loss_curves(resnet50_results)
from going_modular.going_modular import utils
# Save the model
utils.save_model(model=resnet50,
target_dir="models",
model_name="pretrained_resnet50_feature_extractor_drappcompressed.pth")
from pathlib import Path
# Get the model size in bytes then convert to megabytes
pretrained_resnet50_model_size = Path("models/pretrained_resnet50_feature_extractor_drappcompressed.pth").stat().st_size // (1024*1024) # division converts bytes to megabytes (roughly)
print(f"Pretrained ResNet50 feature extractor model size: {pretrained_resnet50_model_size} MB")
# Count number of parameters in ResNet50
resnet50_total_params = sum(torch.numel(param) for param in resnet50.parameters())
resnet50_total_params
# Create a dictionary with EffNetB0 statistics
resnet50_stats = {"test_loss": resnet50_results["test_loss"][-1],
"test_acc": resnet50_results["test_acc"][-1],
"number_of_parameters": resnet50_total_params,
"model_size (MB)": pretrained_resnet50_model_size}
resnet50_stats
from pathlib import Path
# Get all test data paths
print(f"[INFO] Finding all filepaths ending with '.jpg' in directory: {test_dir}")
test_data_paths = list(Path(test_dir).glob("*/*.jpg"))
test_data_paths[:5]
import pathlib
import torch
from PIL import Image
from timeit import default_timer as timer
from tqdm.auto import tqdm
from typing import List, Dict
# 1. Create a function to return a list of dictionaries with sample, truth label, prediction, prediction probability and prediction time
def pred_and_store(paths: List[pathlib.Path],
model: torch.nn.Module,
transform: torchvision.transforms,
class_names: List[str],
device: str = "cuda" if torch.cuda.is_available() else "cpu") -> List[Dict]:
# 2. Create an empty list to store prediction dictionaires
pred_list = []
# 3. Loop through target paths
for path in tqdm(paths):
# 4. Create empty dictionary to store prediction information for each sample
pred_dict = {}
# 5. Get the sample path and ground truth class name
pred_dict["image_path"] = path
class_name = path.parent.stem
pred_dict["class_name"] = class_name
# 6. Start the prediction timer
start_time = timer()
# 7. Open image path
img = Image.open(path).convert('RGB')
# 8. Transform the image, add batch dimension and put image on target device
transformed_image = transform(img).unsqueeze(0).to(device)
# 9. Prepare model for inference by sending it to target device and turning on eval() mode
model.to(device)
model.eval()
# 10. Get prediction probability, predicition label and prediction class
with torch.inference_mode():
pred_logit = model(transformed_image) # perform inference on target sample
pred_prob = torch.softmax(pred_logit, dim=1) # turn logits into prediction probabilities
pred_label = torch.argmax(pred_prob, dim=1) # turn prediction probabilities into prediction label
pred_class = class_names[pred_label.cpu()] # hardcode prediction class to be on CPU
# 11. Make sure things in the dictionary are on CPU (required for inspecting predictions later on)
pred_dict["pred_prob"] = round(pred_prob.unsqueeze(0).max().cpu().item(), 4)
pred_dict["pred_class"] = pred_class
# 12. End the timer and calculate time per pred
end_time = timer()
pred_dict["time_for_pred"] = round(end_time-start_time, 4)
# 13. Does the pred match the true label?
pred_dict["correct"] = class_name == pred_class
# 14. Add the dictionary to the list of preds
pred_list.append(pred_dict)
# 15. Return list of prediction dictionaries
return pred_list
# Make predictions across test dataset with ResNet50
resnet50_test_pred_dicts = pred_and_store(paths=test_data_paths,
model=resnet50,
transform=resnet50_transforms,
class_names=class_names,
device="cpu") # make predictions on CPU
# Inspect the first 2 prediction dictionaries
resnet50_test_pred_dicts[:2]
# Turn the test_pred_dicts into a DataFrame
import pandas as pd
resnet50_test_pred_df = pd.DataFrame(resnet50_test_pred_dicts)
resnet50_test_pred_df.head()
# Check number of correct predictions
resnet50_test_pred_df.correct.value_counts()
# Find the average time per prediction
resnet50_average_time_per_pred = round(resnet50_test_pred_df.time_for_pred.mean(), 4)
print(f"ResNet50 average time per prediction: {resnet50_average_time_per_pred} seconds")
# Add ResNet50 average prediction time to stats dictionary
resnet50_stats["time_per_pred_cpu"] = resnet50_average_time_per_pred
resnet50_stats
# Turn stat dictionaries into DataFrame
df = pd.DataFrame([resnet50_stats])
# Add column for model names
df["model"] = ["ResNet50"]
# Convert accuracy to percentages
df["test_acc"] = round(df["test_acc"] * 100, 2)
df
# Put ResNet50 on CPU
resnet50.to("cpu")
# Check the device
next(iter(resnet50.parameters())).device
from typing import Tuple, Dict
def predict(img) -> Tuple[Dict, float]:
"""Transforms and performs a prediction on img and returns prediction and time taken.
"""
# Start the timer
start_time = timer()
# Transform the target image and add a batch dimension
img = resnet50_transforms(img).unsqueeze(0)
# Put model into evaluation mode and turn on inference mode
resnet50.eval()
with torch.inference_mode():
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
pred_probs = torch.softmax(resnet50(img), dim=1)
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
# Calculate the prediction time
pred_time = round(timer() - start_time, 5)
# Return the prediction dictionary and prediction time
return pred_labels_and_probs, pred_time
# Create a list of example inputs to our Gradio demo
example_list = [[str(filepath)] for filepath in random.sample(test_data_paths, k=4)]
example_list
import gradio as gr
# Create title, description and article strings
title = "DeepFundus 👀"
description = "A ResNet50 feature extractor computer vision model to classify retina pathology from optical funduscopic images."
article = "Created for fun."
# Create the Gradio demo
demo = gr.Interface(fn=predict, # mapping function from input to output
inputs=gr.Image(type="pil"), # what are the inputs?
outputs=[gr.Label(num_top_classes=8, label="Predictions"), # what are the outputs?
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
examples=example_list,
title=title,
description=description,
article=article)
# Launch the demo!
demo.launch(debug=False, # print errors locally?
share=True) # generate a publically shareable URL? |