Spaces:
Running
Running
Upload resnet50_deepfundus.py
Browse filesDeepFundus trained on ResNet50.
- resnet50_deepfundus.py +603 -0
resnet50_deepfundus.py
ADDED
@@ -0,0 +1,603 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""ResNet50_DeepFundus.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1pd56CapAEjZ8AHAW5bi0uMm6ZzJlOpDZ
|
8 |
+
"""
|
9 |
+
|
10 |
+
######################################################### Use block of code if dataset is on GitHub #######################################################
|
11 |
+
# import os
|
12 |
+
# import requests
|
13 |
+
# import zipfile
|
14 |
+
# from pathlib import Path
|
15 |
+
|
16 |
+
# # Setup path to data folder
|
17 |
+
# data_path = Path("data/")
|
18 |
+
# image_path = data_path / "deepfundus"
|
19 |
+
|
20 |
+
# # If the image folder doesn't exist, download it and prepare it...
|
21 |
+
# if image_path.is_dir():
|
22 |
+
# print(f"{image_path} directory exists.")
|
23 |
+
# else:
|
24 |
+
# print(f"Did not find {image_path} directory, creating one...")
|
25 |
+
# image_path.mkdir(parents=True, exist_ok=True)
|
26 |
+
|
27 |
+
# # Download fundus data
|
28 |
+
# with open(data_path / "deepfundus.zip", "wb") as f:
|
29 |
+
# request = requests.get("https://github.com/jfink09/DeepFundus/raw/main/deepfundus.zip")
|
30 |
+
# print("Downloading fundus data...")
|
31 |
+
# f.write(request.content)
|
32 |
+
|
33 |
+
# # Unzip fundus data
|
34 |
+
# with zipfile.ZipFile(data_path / "deepfundus.zip", "r") as zip_ref:
|
35 |
+
# print("Unzipping fundus data...")
|
36 |
+
# zip_ref.extractall(image_path)
|
37 |
+
|
38 |
+
# # Remove zip file
|
39 |
+
# os.remove(data_path / "deepfundus.zip")
|
40 |
+
|
41 |
+
######################################### Use commented out code if dataset was downloaded from GitHub ######################################################
|
42 |
+
# # Setup train and testing paths
|
43 |
+
# train_dir = image_path / "train"
|
44 |
+
# test_dir = image_path / "test"
|
45 |
+
|
46 |
+
# train_dir, test_dir
|
47 |
+
from pathlib import Path
|
48 |
+
|
49 |
+
# Setup train and testing paths
|
50 |
+
train_dir = Path("drive/MyDrive/data/train")
|
51 |
+
test_dir = Path("drive/MyDrive/data/test")
|
52 |
+
|
53 |
+
train_dir, test_dir
|
54 |
+
|
55 |
+
from torchvision import datasets, transforms
|
56 |
+
|
57 |
+
# Create simple transform
|
58 |
+
data_transform = transforms.Compose([
|
59 |
+
transforms.Resize((64, 64)),
|
60 |
+
transforms.ToTensor(),
|
61 |
+
])
|
62 |
+
|
63 |
+
# Use ImageFolder to create dataset(s)
|
64 |
+
train_data = datasets.ImageFolder(root=train_dir, # target folder of images
|
65 |
+
transform=data_transform, # transforms to perform on data (images)
|
66 |
+
target_transform=None) # transforms to perform on labels (if necessary)
|
67 |
+
|
68 |
+
test_data = datasets.ImageFolder(root=test_dir,
|
69 |
+
transform=data_transform)
|
70 |
+
|
71 |
+
print(f"Train data:\n{train_data}\nTest data:\n{test_data}")
|
72 |
+
|
73 |
+
# For this notebook to run with updated APIs, we need torch 1.12+ and torchvision 0.13+
|
74 |
+
try:
|
75 |
+
import torch
|
76 |
+
import torchvision
|
77 |
+
assert int(torch.__version__.split(".")[1]) >= 12, "torch version should be 1.12+"
|
78 |
+
assert int(torchvision.__version__.split(".")[1]) >= 13, "torchvision version should be 0.13+"
|
79 |
+
print(f"torch version: {torch.__version__}")
|
80 |
+
print(f"torchvision version: {torchvision.__version__}")
|
81 |
+
except:
|
82 |
+
print(f"[INFO] torch/torchvision versions not as required, installing nightly versions.")
|
83 |
+
!pip3 install -U torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
|
84 |
+
import torch
|
85 |
+
import torchvision
|
86 |
+
print(f"torch version: {torch.__version__}")
|
87 |
+
print(f"torchvision version: {torchvision.__version__}")
|
88 |
+
|
89 |
+
# Continue with regular imports
|
90 |
+
import matplotlib.pyplot as plt
|
91 |
+
import torch
|
92 |
+
import torchvision
|
93 |
+
|
94 |
+
from torch import nn
|
95 |
+
from torchvision import transforms
|
96 |
+
|
97 |
+
# Try to get torchinfo, install it if it doesn't work
|
98 |
+
try:
|
99 |
+
from torchinfo import summary
|
100 |
+
except:
|
101 |
+
print("[INFO] Couldn't find torchinfo... installing it.")
|
102 |
+
!pip install -q torchinfo
|
103 |
+
from torchinfo import summary
|
104 |
+
|
105 |
+
# Try to import the going_modular directory, download it from GitHub if it doesn't work
|
106 |
+
try:
|
107 |
+
from going_modular.going_modular import data_setup, engine
|
108 |
+
except:
|
109 |
+
# Get the going_modular scripts
|
110 |
+
print("[INFO] Couldn't find going_modular scripts... downloading them from GitHub.")
|
111 |
+
!git clone https://github.com/jfink09/optical-funduscopic-convolutional-neural-network
|
112 |
+
!mv optical-funduscopic-convolutional-neural-network/going_modular .
|
113 |
+
!rm -rf optical-funduscopic-convolutional-neural-network
|
114 |
+
from going_modular.going_modular import data_setup, engine
|
115 |
+
|
116 |
+
# Setup device agnostic code
|
117 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
118 |
+
device
|
119 |
+
|
120 |
+
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
121 |
+
std=[0.229, 0.224, 0.225])
|
122 |
+
|
123 |
+
# Create a transforms pipeline manually (required for torchvision < 0.13)
|
124 |
+
manual_transforms = transforms.Compose([
|
125 |
+
transforms.Resize((224, 224)), # 1. Reshape all images to 224x224 (though some models may require different sizes)
|
126 |
+
transforms.ToTensor(), # 2. Turn image values to between 0 & 1
|
127 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], # 3. A mean of [0.485, 0.456, 0.406] (across each colour channel)
|
128 |
+
std=[0.229, 0.224, 0.225]) # 4. A standard deviation of [0.229, 0.224, 0.225] (across each colour channel),
|
129 |
+
])
|
130 |
+
|
131 |
+
# Create training and testing DataLoaders as well as get a list of class names
|
132 |
+
train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(train_dir=train_dir,
|
133 |
+
test_dir=test_dir,
|
134 |
+
transform=manual_transforms, # resize, convert images to between 0 & 1 and normalize them
|
135 |
+
batch_size=32) # set mini-batch size to 32
|
136 |
+
|
137 |
+
train_dataloader, test_dataloader, class_names
|
138 |
+
|
139 |
+
# Get a set of pretrained model weights
|
140 |
+
weights = torchvision.models.ResNet50_Weights.DEFAULT # .DEFAULT = best available weights from pretraining on ImageNet
|
141 |
+
weights
|
142 |
+
|
143 |
+
# Get the transforms used to create our pretrained weights
|
144 |
+
auto_transforms = weights.transforms()
|
145 |
+
auto_transforms
|
146 |
+
|
147 |
+
# # Create training and testing DataLoaders as well as get a list of class names
|
148 |
+
# train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(train_dir=train_dir,
|
149 |
+
# test_dir=test_dir,
|
150 |
+
# transform=auto_transforms, # perform same data transforms on our own data as the pretrained model
|
151 |
+
# batch_size=32) # set mini-batch size to 32
|
152 |
+
|
153 |
+
# train_dataloader, test_dataloader, class_names
|
154 |
+
|
155 |
+
# OLD: Setup the model with pretrained weights and send it to the target device (this was prior to torchvision v0.13)
|
156 |
+
# model = torchvision.models.efficientnet_b0(pretrained=True).to(device) # OLD method (with pretrained=True)
|
157 |
+
|
158 |
+
# NEW: Setup the model with pretrained weights and send it to the target device (torchvision v0.13+)
|
159 |
+
weights = torchvision.models.ResNet50_Weights.DEFAULT # .DEFAULT = best available weights
|
160 |
+
model = torchvision.models.resnet50(weights=weights).to(device)
|
161 |
+
|
162 |
+
#model # uncomment to output (it's very long)
|
163 |
+
|
164 |
+
# Print a summary using torchinfo (uncomment for actual output)
|
165 |
+
summary(model=model,
|
166 |
+
input_size=(32, 3, 224, 224), # make sure this is "input_size", not "input_shape"
|
167 |
+
# col_names=["input_size"], # uncomment for smaller output
|
168 |
+
col_names=["input_size", "output_size", "num_params", "trainable"],
|
169 |
+
col_width=20,
|
170 |
+
row_settings=["var_names"]
|
171 |
+
)
|
172 |
+
|
173 |
+
# Set the manual seeds
|
174 |
+
torch.manual_seed(42)
|
175 |
+
torch.cuda.manual_seed(42)
|
176 |
+
|
177 |
+
# Get the length of class_names (one output unit for each class)
|
178 |
+
output_shape = len(class_names)
|
179 |
+
|
180 |
+
# Recreate the classifier layer and seed it to the target device
|
181 |
+
model.classifier = torch.nn.Sequential(
|
182 |
+
torch.nn.Dropout(p=0.2, inplace=True),
|
183 |
+
torch.nn.Linear(in_features=2048,
|
184 |
+
out_features=output_shape, # same number of output units as our number of classes
|
185 |
+
bias=True)).to(device)
|
186 |
+
|
187 |
+
# Define loss and optimizer
|
188 |
+
loss_fn = nn.CrossEntropyLoss()
|
189 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
190 |
+
|
191 |
+
# Set the random seeds
|
192 |
+
torch.manual_seed(42)
|
193 |
+
torch.cuda.manual_seed(42)
|
194 |
+
|
195 |
+
# Start the timer
|
196 |
+
from timeit import default_timer as timer
|
197 |
+
start_time = timer()
|
198 |
+
|
199 |
+
# Setup training and save the results
|
200 |
+
results = engine.train(model=model,
|
201 |
+
train_dataloader=train_dataloader,
|
202 |
+
test_dataloader=test_dataloader,
|
203 |
+
optimizer=optimizer,
|
204 |
+
loss_fn=loss_fn,
|
205 |
+
epochs=20,
|
206 |
+
device=device)
|
207 |
+
|
208 |
+
# End the timer and print out how long it took
|
209 |
+
end_time = timer()
|
210 |
+
print(f"[INFO] Total training time: {end_time-start_time:.3f} seconds")
|
211 |
+
|
212 |
+
# Get the plot_loss_curves() function from helper_functions.py, download the file if we don't have it
|
213 |
+
try:
|
214 |
+
from helper_functions import plot_loss_curves
|
215 |
+
except:
|
216 |
+
print("[INFO] Couldn't find helper_functions.py, downloading...")
|
217 |
+
with open("helper_functions.py", "wb") as f:
|
218 |
+
import requests
|
219 |
+
request = requests.get("https://github.com/jfink09/optical-funduscopic-convolutional-neural-network/raw/main/helper_functions.py")
|
220 |
+
f.write(request.content)
|
221 |
+
from helper_functions import plot_loss_curves
|
222 |
+
|
223 |
+
# Plot the loss curves of our model
|
224 |
+
plot_loss_curves(results)
|
225 |
+
|
226 |
+
from typing import List, Tuple
|
227 |
+
|
228 |
+
from PIL import Image
|
229 |
+
|
230 |
+
# 1. Take in a trained model, class names, image path, image size, a transform and target device
|
231 |
+
def pred_and_plot_image(model: torch.nn.Module,
|
232 |
+
image_path: str,
|
233 |
+
class_names: List[str],
|
234 |
+
image_size: Tuple[int, int] = (224, 224),
|
235 |
+
transform: torchvision.transforms = None,
|
236 |
+
device: torch.device=device):
|
237 |
+
|
238 |
+
|
239 |
+
# 2. Open image
|
240 |
+
img = Image.open(image_path)
|
241 |
+
|
242 |
+
# 3. Create transformation for image (if one doesn't exist)
|
243 |
+
if transform is not None:
|
244 |
+
image_transform = transform
|
245 |
+
else:
|
246 |
+
image_transform = transforms.Compose([
|
247 |
+
transforms.Resize(image_size),
|
248 |
+
transforms.ToTensor(),
|
249 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
250 |
+
std=[0.229, 0.224, 0.225]),
|
251 |
+
])
|
252 |
+
|
253 |
+
### Predict on image ###
|
254 |
+
|
255 |
+
# 4. Make sure the model is on the target device
|
256 |
+
model.to(device)
|
257 |
+
|
258 |
+
# 5. Turn on model evaluation mode and inference mode
|
259 |
+
model.eval()
|
260 |
+
with torch.inference_mode():
|
261 |
+
# 6. Transform and add an extra dimension to image (model requires samples in [batch_size, color_channels, height, width])
|
262 |
+
transformed_image = image_transform(img).unsqueeze(dim=0)
|
263 |
+
|
264 |
+
# 7. Make a prediction on image with an extra dimension and send it to the target device
|
265 |
+
target_image_pred = model(transformed_image.to(device))
|
266 |
+
|
267 |
+
# 8. Convert logits -> prediction probabilities (using torch.softmax() for multi-class classification)
|
268 |
+
target_image_pred_probs = torch.softmax(target_image_pred, dim=1)
|
269 |
+
|
270 |
+
# 9. Convert prediction probabilities -> prediction labels
|
271 |
+
target_image_pred_label = torch.argmax(target_image_pred_probs, dim=1)
|
272 |
+
|
273 |
+
# 10. Plot image with predicted label and probability
|
274 |
+
plt.figure()
|
275 |
+
plt.imshow(img)
|
276 |
+
plt.title(f"Pred: {class_names[target_image_pred_label]} | Prob: {target_image_pred_probs.max():.3f}")
|
277 |
+
plt.axis(False);
|
278 |
+
|
279 |
+
# Get a random list of image paths from test set
|
280 |
+
import random
|
281 |
+
num_images_to_plot = 3
|
282 |
+
test_image_path_list = list(Path(test_dir).glob("*/*.jpg")) # get list all image paths from test data
|
283 |
+
test_image_path_sample = random.sample(population=test_image_path_list, # go through all of the test image paths
|
284 |
+
k=num_images_to_plot) # randomly select 'k' image paths to pred and plot
|
285 |
+
|
286 |
+
# Make predictions on and plot the images
|
287 |
+
for image_path in test_image_path_sample:
|
288 |
+
pred_and_plot_image(model=model,
|
289 |
+
image_path=image_path,
|
290 |
+
class_names=class_names,
|
291 |
+
# transform=weights.transforms(), # optionally pass in a specified transform from our pretrained model weights
|
292 |
+
image_size=(224, 224))
|
293 |
+
|
294 |
+
data_path = Path("data/")
|
295 |
+
image_path = data_path / "deepfundus"
|
296 |
+
|
297 |
+
# If the image folder doesn't exist, download it and prepare it...
|
298 |
+
if image_path.is_dir():
|
299 |
+
print(f"{image_path} directory exists.")
|
300 |
+
else:
|
301 |
+
print(f"Did not find {image_path} directory, creating one...")
|
302 |
+
image_path.mkdir(parents=True, exist_ok=True)
|
303 |
+
|
304 |
+
# Import/install Gradio
|
305 |
+
try:
|
306 |
+
import gradio as gr
|
307 |
+
except:
|
308 |
+
!pip -q install gradio
|
309 |
+
import gradio as gr
|
310 |
+
|
311 |
+
print(f"Gradio version: {gr.__version__}")
|
312 |
+
|
313 |
+
from google.colab import drive
|
314 |
+
drive.mount('/content/drive')
|
315 |
+
|
316 |
+
# Put ResNet50 on CPU
|
317 |
+
model.to("cpu")
|
318 |
+
|
319 |
+
# Check the device
|
320 |
+
next(iter(model.parameters())).device
|
321 |
+
|
322 |
+
# 1. Setup pretrained ResNet50 weights
|
323 |
+
resnet50_weights = torchvision.models.ResNet50_Weights.DEFAULT
|
324 |
+
|
325 |
+
# 2. Get ResNet50 transforms
|
326 |
+
resnet50_transforms = resnet50_weights.transforms()
|
327 |
+
|
328 |
+
# 3. Setup pretrained model
|
329 |
+
resnet50 = torchvision.models.resnet50(weights=resnet50_weights) # could also use weights="DEFAULT"
|
330 |
+
|
331 |
+
# 4. Freeze the base layers in the model (this will freeze all layers to begin with)
|
332 |
+
for param in resnet50.parameters():
|
333 |
+
param.requires_grad = True # Set to False for model's other than ResNet
|
334 |
+
|
335 |
+
# 5. Update the classifier head
|
336 |
+
resnet50.classifier = nn.Sequential(
|
337 |
+
nn.Dropout(p=0.3, inplace=True), # keep dropout layer same
|
338 |
+
nn.Linear(in_features=2048, # keep in_features same
|
339 |
+
out_features=8)) # change out_features to suit our number of classes # 4
|
340 |
+
|
341 |
+
def create_resnet50_model(num_classes:int=8, # 4
|
342 |
+
seed:int=42):
|
343 |
+
"""Creates an ResNet50 feature extractor model and transforms.
|
344 |
+
|
345 |
+
Args:
|
346 |
+
num_classes (int, optional): number of classes in the classifier head.
|
347 |
+
Defaults to 3.
|
348 |
+
seed (int, optional): random seed value. Defaults to 42.
|
349 |
+
|
350 |
+
Returns:
|
351 |
+
model (torch.nn.Module): ResNet50 feature extractor model.
|
352 |
+
transforms (torchvision.transforms): ResNet50 image transforms.
|
353 |
+
"""
|
354 |
+
# 1, 2, 3. Create ResNet50 pretrained weights, transforms and model
|
355 |
+
weights = torchvision.models.ResNet50_Weights.DEFAULT
|
356 |
+
transforms = weights.transforms()
|
357 |
+
model = torchvision.models.resnet50(weights=weights)
|
358 |
+
|
359 |
+
# 4. Freeze all layers in base model
|
360 |
+
for param in model.parameters():
|
361 |
+
param.requires_grad = True # Set to False for model's other than ResNet
|
362 |
+
|
363 |
+
# 5. Change classifier head with random seed for reproducibility
|
364 |
+
torch.manual_seed(seed)
|
365 |
+
model.classifier = nn.Sequential(
|
366 |
+
nn.Dropout(p=0.3, inplace=True),
|
367 |
+
nn.Linear(in_features=2048
|
368 |
+
, out_features=num_classes), # If using EffnetB2 in_features = 1408, EffnetB0 in_features = 1280, if ResNet50 in_features = 2048
|
369 |
+
)
|
370 |
+
|
371 |
+
return model, transforms
|
372 |
+
|
373 |
+
resnet50, resnet50_transforms = create_resnet50_model(num_classes=8, # 4
|
374 |
+
seed=42)
|
375 |
+
|
376 |
+
from torchinfo import summary
|
377 |
+
|
378 |
+
# Print ResNet50 model summary (uncomment for full output)
|
379 |
+
summary(resnet50,
|
380 |
+
input_size=(1, 3, 224, 224),
|
381 |
+
col_names=["input_size", "output_size", "num_params", "trainable"],
|
382 |
+
col_width=20,
|
383 |
+
row_settings=["var_names"])
|
384 |
+
|
385 |
+
# Setup DataLoaders
|
386 |
+
from going_modular.going_modular import data_setup
|
387 |
+
train_dataloader_resnet50, test_dataloader_resnet50, class_names = data_setup.create_dataloaders(train_dir=train_dir,
|
388 |
+
test_dir=test_dir,
|
389 |
+
transform=resnet50_transforms,
|
390 |
+
batch_size=32)
|
391 |
+
|
392 |
+
from going_modular.going_modular import engine
|
393 |
+
|
394 |
+
# Setup optimizer
|
395 |
+
optimizer = torch.optim.Adam(params=resnet50.parameters(),
|
396 |
+
lr=1e-3)
|
397 |
+
# Setup loss function
|
398 |
+
loss_fn = torch.nn.CrossEntropyLoss()
|
399 |
+
|
400 |
+
# Set seeds for reproducibility and train the model
|
401 |
+
#set_seeds()
|
402 |
+
resnet50_results = engine.train(model=resnet50,
|
403 |
+
train_dataloader=train_dataloader_resnet50,
|
404 |
+
test_dataloader=test_dataloader_resnet50,
|
405 |
+
epochs=10,
|
406 |
+
optimizer=optimizer,
|
407 |
+
loss_fn=loss_fn,
|
408 |
+
device=device)
|
409 |
+
|
410 |
+
from helper_functions import plot_loss_curves
|
411 |
+
|
412 |
+
plot_loss_curves(resnet50_results)
|
413 |
+
|
414 |
+
from going_modular.going_modular import utils
|
415 |
+
|
416 |
+
# Save the model
|
417 |
+
utils.save_model(model=resnet50,
|
418 |
+
target_dir="models",
|
419 |
+
model_name="pretrained_resnet50_feature_extractor_drappcompressed.pth")
|
420 |
+
|
421 |
+
from pathlib import Path
|
422 |
+
|
423 |
+
# Get the model size in bytes then convert to megabytes
|
424 |
+
pretrained_resnet50_model_size = Path("models/pretrained_resnet50_feature_extractor_drappcompressed.pth").stat().st_size // (1024*1024) # division converts bytes to megabytes (roughly)
|
425 |
+
print(f"Pretrained ResNet50 feature extractor model size: {pretrained_resnet50_model_size} MB")
|
426 |
+
|
427 |
+
# Count number of parameters in ResNet50
|
428 |
+
resnet50_total_params = sum(torch.numel(param) for param in resnet50.parameters())
|
429 |
+
resnet50_total_params
|
430 |
+
|
431 |
+
# Create a dictionary with EffNetB0 statistics
|
432 |
+
resnet50_stats = {"test_loss": resnet50_results["test_loss"][-1],
|
433 |
+
"test_acc": resnet50_results["test_acc"][-1],
|
434 |
+
"number_of_parameters": resnet50_total_params,
|
435 |
+
"model_size (MB)": pretrained_resnet50_model_size}
|
436 |
+
resnet50_stats
|
437 |
+
|
438 |
+
from pathlib import Path
|
439 |
+
|
440 |
+
# Get all test data paths
|
441 |
+
print(f"[INFO] Finding all filepaths ending with '.jpg' in directory: {test_dir}")
|
442 |
+
test_data_paths = list(Path(test_dir).glob("*/*.jpg"))
|
443 |
+
test_data_paths[:5]
|
444 |
+
|
445 |
+
import pathlib
|
446 |
+
import torch
|
447 |
+
|
448 |
+
from PIL import Image
|
449 |
+
from timeit import default_timer as timer
|
450 |
+
from tqdm.auto import tqdm
|
451 |
+
from typing import List, Dict
|
452 |
+
|
453 |
+
# 1. Create a function to return a list of dictionaries with sample, truth label, prediction, prediction probability and prediction time
|
454 |
+
def pred_and_store(paths: List[pathlib.Path],
|
455 |
+
model: torch.nn.Module,
|
456 |
+
transform: torchvision.transforms,
|
457 |
+
class_names: List[str],
|
458 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu") -> List[Dict]:
|
459 |
+
|
460 |
+
# 2. Create an empty list to store prediction dictionaires
|
461 |
+
pred_list = []
|
462 |
+
|
463 |
+
# 3. Loop through target paths
|
464 |
+
for path in tqdm(paths):
|
465 |
+
|
466 |
+
# 4. Create empty dictionary to store prediction information for each sample
|
467 |
+
pred_dict = {}
|
468 |
+
|
469 |
+
# 5. Get the sample path and ground truth class name
|
470 |
+
pred_dict["image_path"] = path
|
471 |
+
class_name = path.parent.stem
|
472 |
+
pred_dict["class_name"] = class_name
|
473 |
+
|
474 |
+
# 6. Start the prediction timer
|
475 |
+
start_time = timer()
|
476 |
+
|
477 |
+
# 7. Open image path
|
478 |
+
img = Image.open(path).convert('RGB')
|
479 |
+
|
480 |
+
# 8. Transform the image, add batch dimension and put image on target device
|
481 |
+
transformed_image = transform(img).unsqueeze(0).to(device)
|
482 |
+
|
483 |
+
# 9. Prepare model for inference by sending it to target device and turning on eval() mode
|
484 |
+
model.to(device)
|
485 |
+
model.eval()
|
486 |
+
|
487 |
+
# 10. Get prediction probability, predicition label and prediction class
|
488 |
+
with torch.inference_mode():
|
489 |
+
pred_logit = model(transformed_image) # perform inference on target sample
|
490 |
+
pred_prob = torch.softmax(pred_logit, dim=1) # turn logits into prediction probabilities
|
491 |
+
pred_label = torch.argmax(pred_prob, dim=1) # turn prediction probabilities into prediction label
|
492 |
+
pred_class = class_names[pred_label.cpu()] # hardcode prediction class to be on CPU
|
493 |
+
|
494 |
+
# 11. Make sure things in the dictionary are on CPU (required for inspecting predictions later on)
|
495 |
+
pred_dict["pred_prob"] = round(pred_prob.unsqueeze(0).max().cpu().item(), 4)
|
496 |
+
pred_dict["pred_class"] = pred_class
|
497 |
+
|
498 |
+
# 12. End the timer and calculate time per pred
|
499 |
+
end_time = timer()
|
500 |
+
pred_dict["time_for_pred"] = round(end_time-start_time, 4)
|
501 |
+
|
502 |
+
# 13. Does the pred match the true label?
|
503 |
+
pred_dict["correct"] = class_name == pred_class
|
504 |
+
|
505 |
+
# 14. Add the dictionary to the list of preds
|
506 |
+
pred_list.append(pred_dict)
|
507 |
+
|
508 |
+
# 15. Return list of prediction dictionaries
|
509 |
+
return pred_list
|
510 |
+
|
511 |
+
# Make predictions across test dataset with ResNet50
|
512 |
+
resnet50_test_pred_dicts = pred_and_store(paths=test_data_paths,
|
513 |
+
model=resnet50,
|
514 |
+
transform=resnet50_transforms,
|
515 |
+
class_names=class_names,
|
516 |
+
device="cpu") # make predictions on CPU
|
517 |
+
|
518 |
+
# Inspect the first 2 prediction dictionaries
|
519 |
+
resnet50_test_pred_dicts[:2]
|
520 |
+
|
521 |
+
# Turn the test_pred_dicts into a DataFrame
|
522 |
+
import pandas as pd
|
523 |
+
resnet50_test_pred_df = pd.DataFrame(resnet50_test_pred_dicts)
|
524 |
+
resnet50_test_pred_df.head()
|
525 |
+
|
526 |
+
# Check number of correct predictions
|
527 |
+
resnet50_test_pred_df.correct.value_counts()
|
528 |
+
|
529 |
+
# Find the average time per prediction
|
530 |
+
resnet50_average_time_per_pred = round(resnet50_test_pred_df.time_for_pred.mean(), 4)
|
531 |
+
print(f"ResNet50 average time per prediction: {resnet50_average_time_per_pred} seconds")
|
532 |
+
|
533 |
+
# Add ResNet50 average prediction time to stats dictionary
|
534 |
+
resnet50_stats["time_per_pred_cpu"] = resnet50_average_time_per_pred
|
535 |
+
resnet50_stats
|
536 |
+
|
537 |
+
# Turn stat dictionaries into DataFrame
|
538 |
+
df = pd.DataFrame([resnet50_stats])
|
539 |
+
|
540 |
+
# Add column for model names
|
541 |
+
df["model"] = ["ResNet50"]
|
542 |
+
|
543 |
+
# Convert accuracy to percentages
|
544 |
+
df["test_acc"] = round(df["test_acc"] * 100, 2)
|
545 |
+
|
546 |
+
df
|
547 |
+
|
548 |
+
# Put ResNet50 on CPU
|
549 |
+
resnet50.to("cpu")
|
550 |
+
|
551 |
+
# Check the device
|
552 |
+
next(iter(resnet50.parameters())).device
|
553 |
+
|
554 |
+
from typing import Tuple, Dict
|
555 |
+
|
556 |
+
def predict(img) -> Tuple[Dict, float]:
|
557 |
+
"""Transforms and performs a prediction on img and returns prediction and time taken.
|
558 |
+
"""
|
559 |
+
# Start the timer
|
560 |
+
start_time = timer()
|
561 |
+
|
562 |
+
# Transform the target image and add a batch dimension
|
563 |
+
img = resnet50_transforms(img).unsqueeze(0)
|
564 |
+
|
565 |
+
# Put model into evaluation mode and turn on inference mode
|
566 |
+
resnet50.eval()
|
567 |
+
with torch.inference_mode():
|
568 |
+
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
569 |
+
pred_probs = torch.softmax(resnet50(img), dim=1)
|
570 |
+
|
571 |
+
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
|
572 |
+
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
|
573 |
+
|
574 |
+
# Calculate the prediction time
|
575 |
+
pred_time = round(timer() - start_time, 5)
|
576 |
+
|
577 |
+
# Return the prediction dictionary and prediction time
|
578 |
+
return pred_labels_and_probs, pred_time
|
579 |
+
|
580 |
+
# Create a list of example inputs to our Gradio demo
|
581 |
+
example_list = [[str(filepath)] for filepath in random.sample(test_data_paths, k=4)]
|
582 |
+
example_list
|
583 |
+
|
584 |
+
import gradio as gr
|
585 |
+
|
586 |
+
# Create title, description and article strings
|
587 |
+
title = "DeepFundus 👀"
|
588 |
+
description = "A ResNet50 feature extractor computer vision model to classify retina pathology from optical funduscopic images."
|
589 |
+
article = "Created for fun."
|
590 |
+
|
591 |
+
# Create the Gradio demo
|
592 |
+
demo = gr.Interface(fn=predict, # mapping function from input to output
|
593 |
+
inputs=gr.Image(type="pil"), # what are the inputs?
|
594 |
+
outputs=[gr.Label(num_top_classes=8, label="Predictions"), # what are the outputs?
|
595 |
+
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
|
596 |
+
examples=example_list,
|
597 |
+
title=title,
|
598 |
+
description=description,
|
599 |
+
article=article)
|
600 |
+
|
601 |
+
# Launch the demo!
|
602 |
+
demo.launch(debug=False, # print errors locally?
|
603 |
+
share=True) # generate a publically shareable URL?
|