Spaces:
Sleeping
Sleeping
File size: 19,815 Bytes
56deb05 d6edddf be51c66 56deb05 48f68ce be51c66 294f796 be51c66 d6edddf be51c66 d6edddf be51c66 48f68ce be51c66 d6edddf be51c66 d6edddf be51c66 48f68ce be51c66 48f68ce be51c66 48f68ce be51c66 48f68ce be51c66 48f68ce be51c66 48f68ce be51c66 48f68ce 294f796 be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 d6edddf be51c66 48f68ce be51c66 48f68ce d6edddf 48f68ce be51c66 48f68ce d6edddf 48f68ce be51c66 56deb05 be51c66 48f68ce be51c66 48f68ce be51c66 d6edddf be51c66 822c8b6 be51c66 822c8b6 be51c66 822c8b6 be51c66 822c8b6 be51c66 294f796 be51c66 d6edddf be51c66 48f68ce 294f796 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import os
import gradio as gr
import numpy as np
import requests
import json
from dotenv import load_dotenv
from tensorflow.keras.models import load_model
from PIL import Image
# Load environment variables
load_dotenv()
# ===== Groq API Key =====
GROQ_API_KEY = os.getenv("GROQ_API_KEY", "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")
GROQ_MODEL = "llama3-70b-8192" # Using Llama 3 70B model
print(f"Groq API key available: {'Yes' if GROQ_API_KEY else 'No'}")
# ===== Fallback to Hugging Face API Token =====
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
print(f"HF API token available: {'Yes' if HF_API_TOKEN else 'No'}")
# ===== Load Trained Models =====
model_a = load_model("Tomato_Leaf_Disease_Model.h5")
model_b = load_model("tomato_leaf_model_final(77%).h5")
classifier_model = load_model("tomato_leaf_classifier_optimized.h5")
# ===== Disease Information Database (fallback if API fails) =====
disease_info = {
"Tomato Bacterial Spot": {
"description": "A bacterial disease that causes small, dark spots on leaves, stems, and fruits.",
"causes": "Caused by Xanthomonas bacteria, spread by water splash, contaminated tools, and seeds.",
"treatment": [
"Remove and destroy infected plants",
"Rotate crops with non-solanaceous plants",
"Use copper-based fungicides",
"Avoid overhead irrigation"
]
},
"Tomato Early Blight": {
"description": "A fungal disease that causes dark spots with concentric rings on lower leaves first.",
"causes": "Caused by Alternaria solani fungus, favored by warm, humid conditions.",
"treatment": [
"Remove infected leaves promptly",
"Improve air circulation around plants",
"Apply fungicides preventatively",
"Mulch around plants to prevent soil splash"
]
},
"Tomato Late Blight": {
"description": "A devastating fungal disease that causes dark, water-soaked lesions on leaves and fruits.",
"causes": "Caused by Phytophthora infestans, favored by cool, wet conditions.",
"treatment": [
"Remove and destroy infected plants immediately",
"Apply fungicides preventatively in humid conditions",
"Improve drainage and air circulation",
"Plant resistant varieties when available"
]
},
"Tomato Mosaic Virus": {
"description": "A viral disease that causes mottled green/yellow patterns on leaves and stunted growth.",
"causes": "Caused by tobacco mosaic virus (TMV), spread by handling, tools, and sometimes seeds.",
"treatment": [
"Remove and destroy infected plants",
"Wash hands and tools after handling infected plants",
"Control insect vectors like aphids",
"Plant resistant varieties"
]
},
"Tomato Yellow Leaf Curl Virus": {
"description": "A viral disease transmitted by whiteflies that causes yellowing and curling of leaves.",
"causes": "Caused by a begomovirus, transmitted primarily by whiteflies.",
"treatment": [
"Use whitefly control measures",
"Remove and destroy infected plants",
"Use reflective mulches to repel whiteflies",
"Plant resistant varieties"
]
},
"Tomato___Target_Spot": {
"description": "A fungal disease causing circular lesions with concentric rings on leaves, stems, and fruits.",
"causes": "Caused by Corynespora cassiicola fungus, favored by warm, humid conditions.",
"treatment": [
"Remove infected plant parts",
"Improve air circulation",
"Apply fungicides at first sign of disease",
"Avoid overhead irrigation"
]
},
"Tomato___Bacterial_spot": {
"description": "A bacterial disease causing small, dark, water-soaked spots on leaves, stems, and fruits.",
"causes": "Caused by Xanthomonas species, spread by water splash and contaminated tools.",
"treatment": [
"Remove infected plant debris",
"Use copper-based bactericides",
"Rotate crops",
"Use disease-free seeds and transplants"
]
},
"Tomato___healthy": {
"description": "The plant shows no signs of disease and appears to be in good health.",
"causes": "Proper growing conditions, good management practices, and disease prevention.",
"treatment": [
"Continue regular watering and fertilization",
"Monitor for early signs of disease",
"Maintain good air circulation",
"Practice crop rotation"
]
}
}
# ===== Preprocessing Function =====
def preprocess_image(image, target_size=(224, 224)):
# Ensure the image is resized and normalized.
if isinstance(image, Image.Image):
img = image.resize(target_size)
else:
img = Image.fromarray(image).resize(target_size)
img_array = np.array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
return img_array
# ===== Disease Label Mappings =====
# Model A labels
disease_labels_a = {
0: "Tomato Bacterial Spot",
1: "Tomato Early Blight",
2: "Tomato Late Blight",
3: "Tomato Mosaic Virus",
4: "Tomato Yellow Leaf Curl Virus"
}
# Model B labels
disease_labels_b = {
0: "Tomato___Target_Spot",
1: "Tomato___Bacterial_spot",
2: "Tomato___Early_blight",
3: "Tomato___healthy",
4: "Tomato___Late_blight"
}
# ===== Prediction Functions =====
def predict_model_a(image):
img = preprocess_image(image)
pred = model_a.predict(img)
predicted_class = np.argmax(pred)
confidence = float(np.max(pred) * 100)
return disease_labels_a.get(predicted_class, "Unknown result"), confidence
def predict_model_b(image):
img = preprocess_image(image)
pred = model_b.predict(img)
predicted_class = np.argmax(pred)
confidence = float(np.max(pred) * 100)
return disease_labels_b.get(predicted_class, "Unknown result"), confidence
def predict_classifier(image):
img = preprocess_image(image)
pred = classifier_model.predict(img)
# Here we assume the classifier returns class 1 for "Tomato Leaf"
return "Tomato Leaf" if np.argmax(pred) == 1 else "Not Tomato Leaf"
# ===== Groq API Call =====
def call_groq_api(prompt):
"""Call Groq API for detailed disease analysis and advice"""
print(f"Calling Groq API with prompt: {prompt[:50]}...")
headers = {
"Authorization": f"Bearer {GROQ_API_KEY}",
"Content-Type": "application/json"
}
payload = {
"model": GROQ_MODEL,
"messages": [
{"role": "system", "content": "You are an expert agricultural advisor specializing in tomato farming and plant diseases."},
{"role": "user", "content": prompt}
],
"max_tokens": 800,
"temperature": 0.7
}
try:
response = requests.post(
"https://api.groq.com/openai/v1/chat/completions",
headers=headers,
json=payload,
timeout=30
)
print(f"Groq API response status: {response.status_code}")
if response.status_code == 200:
result = response.json()
if "choices" in result and len(result["choices"]) > 0:
content = result["choices"][0]["message"]["content"]
print(f"Groq API response received: {len(content)} characters")
return content
print(f"Groq API error: {response.status_code} - {response.text}")
return None
except Exception as e:
print(f"Error with Groq API: {str(e)}")
return None
# ===== Fallback to Hugging Face API =====
def call_hf_api(prompt, model_id="mistralai/Mistral-7B-Instruct-v0.2"):
"""Call Hugging Face API as fallback"""
if not HF_API_TOKEN:
return None
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
# Format prompt for instruction-tuned models
formatted_prompt = f"""<s>[INST] {prompt} [/INST]"""
payload = {
"inputs": formatted_prompt,
"parameters": {
"max_new_tokens": 500,
"temperature": 0.7,
"top_p": 0.95,
"do_sample": True
}
}
url = f"https://api-inference.huggingface.co/models/{model_id}"
try:
response = requests.post(url, headers=headers, json=payload, timeout=30)
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and len(result) > 0:
if "generated_text" in result[0]:
# Extract just the response part (after the prompt)
generated_text = result[0]["generated_text"]
# Remove the prompt from the response
response_text = generated_text.split("[/INST]")[-1].strip()
return response_text
return None
except Exception as e:
print(f"Error with Hugging Face API: {str(e)}")
return None
# ===== AI Assistant Functions =====
def ai_assistant_v1(image, prediction, confidence):
"""Use Groq API for Model A versions"""
if "healthy" in prediction.lower():
prompt = (
"You are an agricultural advisor speaking to a farmer. "
"The tomato crop appears healthy. "
"Provide detailed preventive tips and best practices for maintaining tomato crop health. "
"Include information about watering, fertilization, pest prevention, and optimal growing conditions. "
"Format your response in clear sections with bullet points where appropriate."
)
else:
prompt = (
f"You are an agricultural advisor speaking to a farmer. "
f"A disease has been detected in their tomato crop: {prediction} with {confidence:.1f}% confidence. "
f"Provide detailed advice on how to identify, manage and treat this disease. "
f"Include information about: "
f"1) What causes this disease "
f"2) How it spreads "
f"3) Specific treatments (both organic and chemical options) "
f"4) Preventive measures for the future "
f"Format your response in clear sections with bullet points where appropriate."
)
# Call Groq API
response = call_groq_api(prompt)
# If Groq API fails, try Hugging Face API
if not response:
response = call_hf_api(prompt)
# If both APIs fail, use fallback information
if not response:
# Get fallback information from our database
info = disease_info.get(prediction, {
"description": "Information not available for this disease.",
"causes": "Unknown causes.",
"treatment": ["Consult with a local agricultural extension service."]
})
response = f"""
# {prediction}
## Description
{info.get('description', 'No description available.')}
## Causes
{info.get('causes', 'Information not available.')}
## Recommended Treatment
{chr(10).join(f"- {rec}" for rec in info.get('treatment', ['No specific treatment information available.']))}
*Note: This is fallback information. For more detailed advice, please try again later when the AI service is available.*
"""
return response
def ai_assistant_v2(image, prediction, confidence):
"""Use Groq API for Model B versions"""
if "healthy" in prediction.lower():
prompt = (
"You are an agricultural advisor speaking to a farmer. "
"The tomato crop appears healthy. "
"Provide detailed preventive tips and best practices for maintaining tomato crop health. "
"Include information about watering, fertilization, pest prevention, and optimal growing conditions. "
"Format your response in clear sections with bullet points where appropriate."
)
else:
prompt = (
f"You are an agricultural advisor speaking to a farmer. "
f"A disease has been detected in their tomato crop: {prediction} with {confidence:.1f}% confidence. "
f"Provide detailed advice on how to identify, manage and treat this disease. "
f"Include information about: "
f"1) What causes this disease "
f"2) How it spreads "
f"3) Specific treatments (both organic and chemical options) "
f"4) Preventive measures for the future "
f"Format your response in clear sections with bullet points where appropriate."
)
# Call Groq API
response = call_groq_api(prompt)
# If Groq API fails, try Hugging Face API
if not response:
response = call_hf_api(prompt)
# If both APIs fail, use fallback information
if not response:
# Get fallback information from our database
info = disease_info.get(prediction, {
"description": "Information not available for this disease.",
"causes": "Unknown causes.",
"treatment": ["Consult with a local agricultural extension service."]
})
response = f"""
# {prediction}
## Description
{info.get('description', 'No description available.')}
## Causes
{info.get('causes', 'Information not available.')}
## Recommended Treatment
{chr(10).join(f"- {rec}" for rec in info.get('treatment', ['No specific treatment information available.']))}
*Note: This is fallback information. For more detailed advice, please try again later when the AI service is available.*
"""
return response
# ===== Process Function Based on Version =====
def process_version(image, version):
if image is None:
return "No image provided."
# --- Version 1.x (Model A) ---
if version == "1.1":
result, confidence = predict_model_a(image)
return f"Model A Prediction: {result} (Confidence: {confidence:.1f}%)\n\nView Model A Training Notebook: https://colab.research.google.com/drive/1FMjs7JmdO6WVoXbzLA-ymwnIKq-GaV6w?usp=sharing"
elif version == "1.2":
result, confidence = predict_model_a(image)
advice = ai_assistant_v1(image, result, confidence)
return f"Model A Prediction: {result} (Confidence: {confidence:.1f}%)\n\nExpert Advice:\n{advice}"
elif version == "1.3":
cls_result = predict_classifier(image)
if cls_result != "Tomato Leaf":
return "Classifier: The image is not a tomato leaf. Please try again with a tomato leaf image."
result, confidence = predict_model_a(image)
advice = ai_assistant_v1(image, result, confidence)
return (
f"Classifier: {cls_result}\n"
f"Model A Prediction: {result} (Confidence: {confidence:.1f}%)\n\n"
f"Expert Advice:\n{advice}\n\n"
f"[View Model A & Classifier Training Notebook](https://colab.research.google.com/drive/1FMjs7JmdO6WVoXbzLA-ymwnIKq-GaV6w?usp=sharing)"
)
# --- Version 2.x (Model B) ---
elif version == "2.1":
result, confidence = predict_model_b(image)
return f"Model B Prediction: {result} (Confidence: {confidence:.1f}%)\n\n[View Model B Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)"
elif version == "2.2":
result, confidence = predict_model_b(image)
advice = ai_assistant_v2(image, result, confidence)
return f"Model B Prediction: {result} (Confidence: {confidence:.1f}%)\n\nExpert Advice:\n{advice}"
elif version == "2.3":
cls_result = predict_classifier(image)
if cls_result != "Tomato Leaf":
return "Classifier: The image is not a tomato leaf. Please try again with a tomato leaf image."
result, confidence = predict_model_b(image)
advice = ai_assistant_v2(image, result, confidence)
return (
f"Classifier: {cls_result}\n"
f"Model B Prediction: {result} (Confidence: {confidence:.1f}%)\n\n"
f"Expert Advice:\n{advice}\n\n"
f"[View Model B & Classifier Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)"
)
else:
return "Invalid version selected."
# ===== Helper Function to Choose Between Uploaded & Camera Image =====
def combine_images(uploaded, camera):
return camera if camera is not None else uploaded
# ===== CSS for Theme Switching =====
light_css = """
<style>
body { background-color: white; color: black; }
.gr-button { background-color: #4CAF50; color: white; }
.gr-input, .gr-textbox, .gr-dropdown, .gr-radio, .gr-markdown, .gr-container { background-color: white; color: black; }
</style>
"""
dark_css = """
<style>
body { background-color: #121212 !important; color: #e0e0e0 !important; }
.gr-button { background-color: #555 !important; color: white !important; }
.gr-input, .gr-textbox, .gr-dropdown, .gr-radio, .gr-markdown, .gr-container { background-color: #333 !important; color: #e0e0e0 !important; }
</style>
"""
def update_css(theme):
if theme == "Dark":
return dark_css
else:
return light_css
# ===== Gradio Interface =====
with gr.Blocks() as demo:
# Hidden element for CSS injection (initially Light theme)
css_injector = gr.HTML(update_css("Light"))
gr.Markdown("# πΏ FarMVi8ioN β AI-powered Crop Monitoring")
gr.Markdown("Detect tomato leaf diseases and get actionable advice on how to curb them.")
with gr.Row():
# ----- Left Column (β30%) -----
with gr.Column(scale=1):
version = gr.Dropdown(
choices=["1.1", "1.2", "1.3", "2.1", "2.2", "2.3"],
label="Select Version",
value="1.3",
info="Versions 1.x use Model A; Versions 2.x use Model B."
)
theme_choice = gr.Radio(
choices=["Light", "Dark"],
label="Select Theme",
value="Light"
)
gr.Markdown("### Notebook Links")
gr.Markdown(
"""
**For Model A:**
- Model A Only: [Training Notebook](https://colab.research.google.com/drive/1FMjs7JmdO6WVoXbzLA-ymwnIKq-GaV6w?usp=sharing)
- Model A & Classifier: [Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)
**For Model B:**
- Model B Only: [Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)
- Model B & Classifier: [Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)
"""
)
# ----- Right Column (β70%) -----
with gr.Column(scale=2):
image_input = gr.Image(label="π Upload Tomato Leaf Image", type="pil", sources=["upload", "webcam", "clipboard"])
submit = gr.Button("π Analyze", variant="primary")
output = gr.Markdown(label="π Diagnosis & Advice")
# Update CSS dynamically based on theme selection
theme_choice.change(fn=update_css, inputs=theme_choice, outputs=css_injector)
# When submit is clicked, combine image inputs and process the selected version
submit.click(
fn=lambda img, ver: process_version(img, ver),
inputs=[image_input, version],
outputs=output
)
demo.launch()
|