Spaces:
Sleeping
Sleeping
Update app.py with Groq API integration
Browse files
app.py
CHANGED
@@ -2,12 +2,102 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import requests
|
|
|
|
|
5 |
from tensorflow.keras.models import load_model
|
6 |
from PIL import Image
|
7 |
|
8 |
-
# =====
|
9 |
-
#
|
10 |
-
HF_API_TOKEN = os.getenv("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# ===== Load Trained Models =====
|
13 |
model_a = load_model("Tomato_Leaf_Disease_Model.h5")
|
@@ -26,7 +116,7 @@ def preprocess_image(image, target_size=(224, 224)):
|
|
26 |
return img_array
|
27 |
|
28 |
# ===== Disease Label Mappings =====
|
29 |
-
# Model A labels
|
30 |
disease_labels_a = {
|
31 |
0: "Tomato Bacterial Spot",
|
32 |
1: "Tomato Early Blight",
|
@@ -35,7 +125,7 @@ disease_labels_a = {
|
|
35 |
4: "Tomato Yellow Leaf Curl Virus"
|
36 |
}
|
37 |
|
38 |
-
# Model B labels
|
39 |
disease_labels_b = {
|
40 |
0: "Tomato___Target_Spot",
|
41 |
1: "Tomato___Bacterial_spot",
|
@@ -49,13 +139,15 @@ def predict_model_a(image):
|
|
49 |
img = preprocess_image(image)
|
50 |
pred = model_a.predict(img)
|
51 |
predicted_class = np.argmax(pred)
|
52 |
-
|
|
|
53 |
|
54 |
def predict_model_b(image):
|
55 |
img = preprocess_image(image)
|
56 |
pred = model_b.predict(img)
|
57 |
predicted_class = np.argmax(pred)
|
58 |
-
|
|
|
59 |
|
60 |
def predict_classifier(image):
|
61 |
img = preprocess_image(image)
|
@@ -63,113 +155,265 @@ def predict_classifier(image):
|
|
63 |
# Here we assume the classifier returns class 1 for "Tomato Leaf"
|
64 |
return "Tomato Leaf" if np.argmax(pred) == 1 else "Not Tomato Leaf"
|
65 |
|
66 |
-
# =====
|
67 |
-
def
|
68 |
-
"""
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
else:
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# ===== AI Assistant Functions =====
|
98 |
-
def
|
99 |
-
|
100 |
-
if "
|
101 |
prompt = (
|
102 |
-
"You are an agricultural advisor
|
103 |
-
"
|
|
|
|
|
|
|
104 |
)
|
105 |
else:
|
106 |
prompt = (
|
107 |
-
f"You are an agricultural advisor
|
108 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
)
|
110 |
-
return call_llama2(prompt)
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
# ===== Process Function Based on Version =====
|
127 |
def process_version(image, version):
|
128 |
if image is None:
|
129 |
return "No image provided."
|
130 |
-
|
131 |
# --- Version 1.x (Model A) ---
|
132 |
if version == "1.1":
|
133 |
-
result = predict_model_a(image)
|
134 |
-
return f"Model A Prediction: {result}\n\nView Model A Training Notebook
|
135 |
-
|
136 |
elif version == "1.2":
|
137 |
-
result = predict_model_a(image)
|
138 |
-
advice =
|
139 |
-
return f"Model A Prediction: {result}
|
140 |
-
|
141 |
elif version == "1.3":
|
142 |
cls_result = predict_classifier(image)
|
143 |
if cls_result != "Tomato Leaf":
|
144 |
-
return "Classifier: The image is not a tomato leaf. Please try again."
|
145 |
-
|
146 |
-
|
|
|
147 |
return (
|
148 |
-
f"Classifier: {cls_result}\
|
149 |
-
f"
|
|
|
|
|
150 |
)
|
151 |
-
|
152 |
# --- Version 2.x (Model B) ---
|
153 |
elif version == "2.1":
|
154 |
-
result = predict_model_b(image)
|
155 |
-
return f"Model B Prediction: {result}\n\n[View Model B Training Notebook]
|
156 |
-
|
157 |
elif version == "2.2":
|
158 |
-
result = predict_model_b(image)
|
159 |
-
advice =
|
160 |
-
return f"Model B Prediction: {result}
|
161 |
-
|
162 |
elif version == "2.3":
|
163 |
cls_result = predict_classifier(image)
|
164 |
if cls_result != "Tomato Leaf":
|
165 |
-
return "Classifier: The image is not a tomato leaf. Please try again."
|
166 |
-
|
167 |
-
|
|
|
168 |
return (
|
169 |
-
f"Classifier: {cls_result}\
|
|
|
|
|
170 |
f"[View Model B & Classifier Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)"
|
171 |
)
|
172 |
-
|
173 |
else:
|
174 |
return "Invalid version selected."
|
175 |
|
@@ -180,17 +424,17 @@ def combine_images(uploaded, camera):
|
|
180 |
# ===== CSS for Theme Switching =====
|
181 |
light_css = """
|
182 |
<style>
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
</style>
|
187 |
"""
|
188 |
|
189 |
dark_css = """
|
190 |
<style>
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
</style>
|
195 |
"""
|
196 |
|
@@ -204,52 +448,100 @@ def update_css(theme):
|
|
204 |
with gr.Blocks() as demo:
|
205 |
# Hidden element for CSS injection (initially Light theme)
|
206 |
css_injector = gr.HTML(update_css("Light"))
|
207 |
-
|
208 |
-
gr.Markdown("# πΏ
|
209 |
gr.Markdown("Detect tomato leaf diseases and get actionable advice on how to curb them.")
|
210 |
-
|
211 |
-
with gr.
|
212 |
-
#
|
213 |
-
with gr.
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
)
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
theme_choice.change(fn=update_css, inputs=theme_choice, outputs=css_injector)
|
247 |
-
|
248 |
-
# When submit is clicked, combine image inputs and process the selected version
|
249 |
submit.click(
|
250 |
fn=lambda uploaded, camera, ver: process_version(combine_images(uploaded, camera), ver),
|
251 |
inputs=[image_input, camera_input, version],
|
252 |
outputs=output
|
253 |
)
|
254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
demo.launch()
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import requests
|
5 |
+
import json
|
6 |
+
import time
|
7 |
from tensorflow.keras.models import load_model
|
8 |
from PIL import Image
|
9 |
|
10 |
+
# ===== API Configuration =====
|
11 |
+
# Try to get API tokens from environment variables
|
12 |
+
HF_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN") # Hugging Face API token
|
13 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY") # Groq API key
|
14 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") # OpenAI API key (fallback)
|
15 |
+
|
16 |
+
print(f"API tokens available: HF={'Yes' if HF_API_TOKEN else 'No'}, Groq={'Yes' if GROQ_API_KEY else 'No'}, OpenAI={'Yes' if OPENAI_API_KEY else 'No'}")
|
17 |
+
|
18 |
+
# ===== Disease Information Database =====
|
19 |
+
disease_info = {
|
20 |
+
"Tomato Bacterial Spot": {
|
21 |
+
"description": "A bacterial disease that causes small, dark spots on leaves, stems, and fruits.",
|
22 |
+
"causes": "Caused by Xanthomonas bacteria, spread by water splash, contaminated tools, and seeds.",
|
23 |
+
"treatment": [
|
24 |
+
"Remove and destroy infected plants",
|
25 |
+
"Rotate crops with non-solanaceous plants",
|
26 |
+
"Use copper-based fungicides",
|
27 |
+
"Avoid overhead irrigation"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
"Tomato Early Blight": {
|
31 |
+
"description": "A fungal disease that causes dark spots with concentric rings on lower leaves first.",
|
32 |
+
"causes": "Caused by Alternaria solani fungus, favored by warm, humid conditions.",
|
33 |
+
"treatment": [
|
34 |
+
"Remove infected leaves promptly",
|
35 |
+
"Improve air circulation around plants",
|
36 |
+
"Apply fungicides preventatively",
|
37 |
+
"Mulch around plants to prevent soil splash"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
"Tomato Late Blight": {
|
41 |
+
"description": "A devastating fungal disease that causes dark, water-soaked lesions on leaves and fruits.",
|
42 |
+
"causes": "Caused by Phytophthora infestans, favored by cool, wet conditions.",
|
43 |
+
"treatment": [
|
44 |
+
"Remove and destroy infected plants immediately",
|
45 |
+
"Apply fungicides preventatively in humid conditions",
|
46 |
+
"Improve drainage and air circulation",
|
47 |
+
"Plant resistant varieties when available"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
"Tomato Mosaic Virus": {
|
51 |
+
"description": "A viral disease that causes mottled green/yellow patterns on leaves and stunted growth.",
|
52 |
+
"causes": "Caused by tobacco mosaic virus (TMV), spread by handling, tools, and sometimes seeds.",
|
53 |
+
"treatment": [
|
54 |
+
"Remove and destroy infected plants",
|
55 |
+
"Wash hands and tools after handling infected plants",
|
56 |
+
"Control insect vectors like aphids",
|
57 |
+
"Plant resistant varieties"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
"Tomato Yellow Leaf Curl Virus": {
|
61 |
+
"description": "A viral disease transmitted by whiteflies that causes yellowing and curling of leaves.",
|
62 |
+
"causes": "Caused by a begomovirus, transmitted primarily by whiteflies.",
|
63 |
+
"treatment": [
|
64 |
+
"Use whitefly control measures",
|
65 |
+
"Remove and destroy infected plants",
|
66 |
+
"Use reflective mulches to repel whiteflies",
|
67 |
+
"Plant resistant varieties"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
"Tomato___Target_Spot": {
|
71 |
+
"description": "A fungal disease causing circular lesions with concentric rings on leaves, stems, and fruits.",
|
72 |
+
"causes": "Caused by Corynespora cassiicola fungus, favored by warm, humid conditions.",
|
73 |
+
"treatment": [
|
74 |
+
"Remove infected plant parts",
|
75 |
+
"Improve air circulation",
|
76 |
+
"Apply fungicides at first sign of disease",
|
77 |
+
"Avoid overhead irrigation"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
"Tomato___Bacterial_spot": {
|
81 |
+
"description": "A bacterial disease causing small, dark, water-soaked spots on leaves, stems, and fruits.",
|
82 |
+
"causes": "Caused by Xanthomonas species, spread by water splash and contaminated tools.",
|
83 |
+
"treatment": [
|
84 |
+
"Remove infected plant debris",
|
85 |
+
"Use copper-based bactericides",
|
86 |
+
"Rotate crops",
|
87 |
+
"Use disease-free seeds and transplants"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
"Tomato___healthy": {
|
91 |
+
"description": "The plant shows no signs of disease and appears to be in good health.",
|
92 |
+
"causes": "Proper growing conditions, good management practices, and disease prevention.",
|
93 |
+
"treatment": [
|
94 |
+
"Continue regular watering and fertilization",
|
95 |
+
"Monitor for early signs of disease",
|
96 |
+
"Maintain good air circulation",
|
97 |
+
"Practice crop rotation"
|
98 |
+
]
|
99 |
+
}
|
100 |
+
}
|
101 |
|
102 |
# ===== Load Trained Models =====
|
103 |
model_a = load_model("Tomato_Leaf_Disease_Model.h5")
|
|
|
116 |
return img_array
|
117 |
|
118 |
# ===== Disease Label Mappings =====
|
119 |
+
# Model A labels
|
120 |
disease_labels_a = {
|
121 |
0: "Tomato Bacterial Spot",
|
122 |
1: "Tomato Early Blight",
|
|
|
125 |
4: "Tomato Yellow Leaf Curl Virus"
|
126 |
}
|
127 |
|
128 |
+
# Model B labels
|
129 |
disease_labels_b = {
|
130 |
0: "Tomato___Target_Spot",
|
131 |
1: "Tomato___Bacterial_spot",
|
|
|
139 |
img = preprocess_image(image)
|
140 |
pred = model_a.predict(img)
|
141 |
predicted_class = np.argmax(pred)
|
142 |
+
confidence = float(np.max(pred) * 100)
|
143 |
+
return disease_labels_a.get(predicted_class, "Unknown result"), confidence
|
144 |
|
145 |
def predict_model_b(image):
|
146 |
img = preprocess_image(image)
|
147 |
pred = model_b.predict(img)
|
148 |
predicted_class = np.argmax(pred)
|
149 |
+
confidence = float(np.max(pred) * 100)
|
150 |
+
return disease_labels_b.get(predicted_class, "Unknown result"), confidence
|
151 |
|
152 |
def predict_classifier(image):
|
153 |
img = preprocess_image(image)
|
|
|
155 |
# Here we assume the classifier returns class 1 for "Tomato Leaf"
|
156 |
return "Tomato Leaf" if np.argmax(pred) == 1 else "Not Tomato Leaf"
|
157 |
|
158 |
+
# ===== AI Model API Calls =====
|
159 |
+
def get_ai_advice(prompt, retries=2):
|
160 |
+
"""Try multiple AI models with fallback mechanisms"""
|
161 |
+
|
162 |
+
# Try Groq API first (if key available)
|
163 |
+
if GROQ_API_KEY:
|
164 |
+
try:
|
165 |
+
headers = {
|
166 |
+
"Authorization": f"Bearer {GROQ_API_KEY}",
|
167 |
+
"Content-Type": "application/json"
|
168 |
+
}
|
169 |
+
|
170 |
+
payload = {
|
171 |
+
"model": "llama3-8b-8192", # Using Llama 3 8B model
|
172 |
+
"messages": [
|
173 |
+
{"role": "system", "content": "You are an expert agricultural advisor specializing in tomato farming."},
|
174 |
+
{"role": "user", "content": prompt}
|
175 |
+
],
|
176 |
+
"max_tokens": 800,
|
177 |
+
"temperature": 0.7
|
178 |
+
}
|
179 |
+
|
180 |
+
response = requests.post(
|
181 |
+
"https://api.groq.com/openai/v1/chat/completions",
|
182 |
+
headers=headers,
|
183 |
+
json=payload,
|
184 |
+
timeout=30
|
185 |
+
)
|
186 |
+
|
187 |
+
if response.status_code == 200:
|
188 |
+
result = response.json()
|
189 |
+
if "choices" in result and len(result["choices"]) > 0:
|
190 |
+
return result["choices"][0]["message"]["content"]
|
191 |
+
|
192 |
+
print(f"Groq API error: {response.status_code} - {response.text}")
|
193 |
+
|
194 |
+
except Exception as e:
|
195 |
+
print(f"Error with Groq API: {str(e)}")
|
196 |
+
|
197 |
+
# Try Hugging Face Inference API as first fallback (if token available)
|
198 |
+
if HF_API_TOKEN:
|
199 |
+
try:
|
200 |
+
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
201 |
+
|
202 |
+
# Format prompt for instruction-tuned models
|
203 |
+
formatted_prompt = f"""<s>[INST] {prompt} [/INST]"""
|
204 |
+
|
205 |
+
payload = {
|
206 |
+
"inputs": formatted_prompt,
|
207 |
+
"parameters": {
|
208 |
+
"max_new_tokens": 800,
|
209 |
+
"temperature": 0.7,
|
210 |
+
"top_p": 0.95,
|
211 |
+
"do_sample": True
|
212 |
+
}
|
213 |
+
}
|
214 |
+
|
215 |
+
# Try Mistral model first
|
216 |
+
url = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
217 |
+
|
218 |
+
response = requests.post(url, headers=headers, json=payload, timeout=30)
|
219 |
+
|
220 |
+
if response.status_code == 200:
|
221 |
+
result = response.json()
|
222 |
+
if isinstance(result, list) and len(result) > 0:
|
223 |
+
if "generated_text" in result[0]:
|
224 |
+
# Extract just the response part (after the prompt)
|
225 |
+
generated_text = result[0]["generated_text"]
|
226 |
+
# Remove the prompt from the response
|
227 |
+
response_text = generated_text.split("[/INST]")[-1].strip()
|
228 |
+
return response_text
|
229 |
+
|
230 |
+
# If Mistral fails, try Llama 3
|
231 |
+
url = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
232 |
+
response = requests.post(url, headers=headers, json=payload, timeout=30)
|
233 |
+
|
234 |
+
if response.status_code == 200:
|
235 |
+
result = response.json()
|
236 |
+
if isinstance(result, list) and len(result) > 0:
|
237 |
+
if "generated_text" in result[0]:
|
238 |
+
generated_text = result[0]["generated_text"]
|
239 |
+
response_text = generated_text.split("[/INST]")[-1].strip()
|
240 |
+
return response_text
|
241 |
+
|
242 |
+
except Exception as e:
|
243 |
+
print(f"Error with Hugging Face API: {str(e)}")
|
244 |
+
|
245 |
+
# Try OpenAI API as final fallback (if key available)
|
246 |
+
if OPENAI_API_KEY:
|
247 |
+
try:
|
248 |
+
headers = {
|
249 |
+
"Authorization": f"Bearer {OPENAI_API_KEY}",
|
250 |
+
"Content-Type": "application/json"
|
251 |
+
}
|
252 |
+
|
253 |
+
payload = {
|
254 |
+
"model": "gpt-3.5-turbo",
|
255 |
+
"messages": [
|
256 |
+
{"role": "system", "content": "You are an expert agricultural advisor specializing in tomato farming."},
|
257 |
+
{"role": "user", "content": prompt}
|
258 |
+
],
|
259 |
+
"max_tokens": 800,
|
260 |
+
"temperature": 0.7
|
261 |
+
}
|
262 |
+
|
263 |
+
response = requests.post(
|
264 |
+
"https://api.openai.com/v1/chat/completions",
|
265 |
+
headers=headers,
|
266 |
+
json=payload,
|
267 |
+
timeout=30
|
268 |
+
)
|
269 |
+
|
270 |
+
if response.status_code == 200:
|
271 |
+
result = response.json()
|
272 |
+
if "choices" in result and len(result["choices"]) > 0:
|
273 |
+
return result["choices"][0]["message"]["content"]
|
274 |
+
|
275 |
+
except Exception as e:
|
276 |
+
print(f"Error with OpenAI API: {str(e)}")
|
277 |
+
|
278 |
+
# If all API calls fail, use the fallback information from our database
|
279 |
+
disease_name = prompt.split("disease has been detected: ")[-1].split(" with")[0] if "disease has been detected:" in prompt else ""
|
280 |
+
|
281 |
+
if disease_name and disease_name in disease_info:
|
282 |
+
info = disease_info[disease_name]
|
283 |
+
return f"""
|
284 |
+
# {disease_name}
|
285 |
+
|
286 |
+
## Description
|
287 |
+
{info['description']}
|
288 |
+
|
289 |
+
## Causes
|
290 |
+
{info['causes']}
|
291 |
+
|
292 |
+
## Recommended Treatment
|
293 |
+
{chr(10).join(f"- {rec}" for rec in info['treatment'])}
|
294 |
+
|
295 |
+
*Note: This is fallback information as our AI service is currently unavailable.*
|
296 |
+
"""
|
297 |
else:
|
298 |
+
# Generic fallback response
|
299 |
+
return """
|
300 |
+
# Agricultural Advice
|
301 |
+
|
302 |
+
I apologize, but I'm currently unable to connect to our AI service. Here are some general tips for tomato plant care:
|
303 |
+
|
304 |
+
## General Tomato Care Tips
|
305 |
+
- Water consistently, aiming for 1-2 inches per week
|
306 |
+
- Provide support with stakes or cages
|
307 |
+
- Fertilize regularly with balanced fertilizer
|
308 |
+
- Remove suckers for indeterminate varieties
|
309 |
+
- Monitor for pests and diseases regularly
|
310 |
+
- Ensure good air circulation between plants
|
311 |
+
- Mulch to retain moisture and prevent soil-borne diseases
|
312 |
+
|
313 |
+
Please try again later for more specific advice.
|
314 |
+
"""
|
315 |
|
316 |
# ===== AI Assistant Functions =====
|
317 |
+
def generate_disease_advice(disease_name, confidence):
|
318 |
+
"""Generate advice for a specific disease with confidence level."""
|
319 |
+
if "healthy" in disease_name.lower():
|
320 |
prompt = (
|
321 |
+
"You are an agricultural advisor speaking to a farmer. "
|
322 |
+
"The tomato crop appears healthy. "
|
323 |
+
"Provide detailed preventive tips and best practices for maintaining tomato crop health. "
|
324 |
+
"Include information about watering, fertilization, pest prevention, and optimal growing conditions. "
|
325 |
+
"Format your response in clear sections with bullet points where appropriate."
|
326 |
)
|
327 |
else:
|
328 |
prompt = (
|
329 |
+
f"You are an agricultural advisor speaking to a farmer. "
|
330 |
+
f"A disease has been detected in their tomato crop: {disease_name} with {confidence:.1f}% confidence. "
|
331 |
+
f"Provide detailed advice on how to identify, manage and treat this disease. "
|
332 |
+
f"Include information about: "
|
333 |
+
f"1) What causes this disease "
|
334 |
+
f"2) How it spreads "
|
335 |
+
f"3) Specific treatments (both organic and chemical options) "
|
336 |
+
f"4) Preventive measures for the future "
|
337 |
+
f"Format your response in clear sections with bullet points where appropriate."
|
338 |
)
|
|
|
339 |
|
340 |
+
return get_ai_advice(prompt)
|
341 |
+
|
342 |
+
def chat_with_farmer(message, chat_history):
|
343 |
+
"""Handle chat interactions with farmers about agricultural topics."""
|
344 |
+
if not message.strip():
|
345 |
+
return "", chat_history
|
346 |
+
|
347 |
+
# Prepare context from chat history
|
348 |
+
context = "\n".join([f"Farmer: {q}\nAdvisor: {a}" for q, a in chat_history[-3:]]) # Use last 3 exchanges for context
|
349 |
+
|
350 |
+
prompt = (
|
351 |
+
f"You are FarmAssist, an expert agricultural advisor specializing in tomato farming and plant diseases. "
|
352 |
+
f"You provide helpful, accurate, and practical advice to farmers. "
|
353 |
+
f"Always be respectful and considerate of farmers' knowledge while providing expert guidance. "
|
354 |
+
f"If you're unsure about something, acknowledge it and provide the best information you can. "
|
355 |
+
f"Previous conversation:\n{context}\n\n"
|
356 |
+
f"Farmer's new question: {message}\n\n"
|
357 |
+
f"Provide a helpful, informative response about farming, focusing on tomatoes if relevant."
|
358 |
+
)
|
359 |
+
|
360 |
+
response = get_ai_advice(prompt)
|
361 |
+
chat_history.append((message, response))
|
362 |
+
return "", chat_history
|
363 |
|
364 |
# ===== Process Function Based on Version =====
|
365 |
def process_version(image, version):
|
366 |
if image is None:
|
367 |
return "No image provided."
|
368 |
+
|
369 |
# --- Version 1.x (Model A) ---
|
370 |
if version == "1.1":
|
371 |
+
result, confidence = predict_model_a(image)
|
372 |
+
return f"Model A Prediction: {result} (Confidence: {confidence:.1f}%)\n\nView Model A Training Notebook: https://colab.research.google.com/drive/1FMjs7JmdO6WVoXbzLA-ymwnIKq-GaV6w?usp=sharing"
|
373 |
+
|
374 |
elif version == "1.2":
|
375 |
+
result, confidence = predict_model_a(image)
|
376 |
+
advice = generate_disease_advice(result, confidence)
|
377 |
+
return f"Model A Prediction: {result} (Confidence: {confidence:.1f}%)\n\nExpert Advice:\n{advice}"
|
378 |
+
|
379 |
elif version == "1.3":
|
380 |
cls_result = predict_classifier(image)
|
381 |
if cls_result != "Tomato Leaf":
|
382 |
+
return "Classifier: The image is not a tomato leaf. Please try again with a tomato leaf image."
|
383 |
+
|
384 |
+
result, confidence = predict_model_a(image)
|
385 |
+
advice = generate_disease_advice(result, confidence)
|
386 |
return (
|
387 |
+
f"Classifier: {cls_result}\n"
|
388 |
+
f"Model A Prediction: {result} (Confidence: {confidence:.1f}%)\n\n"
|
389 |
+
f"Expert Advice:\n{advice}\n\n"
|
390 |
+
f"[View Model A & Classifier Training Notebook](https://colab.research.google.com/drive/1FMjs7JmdO6WVoXbzLA-ymwnIKq-GaV6w?usp=sharing)"
|
391 |
)
|
392 |
+
|
393 |
# --- Version 2.x (Model B) ---
|
394 |
elif version == "2.1":
|
395 |
+
result, confidence = predict_model_b(image)
|
396 |
+
return f"Model B Prediction: {result} (Confidence: {confidence:.1f}%)\n\n[View Model B Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)"
|
397 |
+
|
398 |
elif version == "2.2":
|
399 |
+
result, confidence = predict_model_b(image)
|
400 |
+
advice = generate_disease_advice(result, confidence)
|
401 |
+
return f"Model B Prediction: {result} (Confidence: {confidence:.1f}%)\n\nExpert Advice:\n{advice}"
|
402 |
+
|
403 |
elif version == "2.3":
|
404 |
cls_result = predict_classifier(image)
|
405 |
if cls_result != "Tomato Leaf":
|
406 |
+
return "Classifier: The image is not a tomato leaf. Please try again with a tomato leaf image."
|
407 |
+
|
408 |
+
result, confidence = predict_model_b(image)
|
409 |
+
advice = generate_disease_advice(result, confidence)
|
410 |
return (
|
411 |
+
f"Classifier: {cls_result}\n"
|
412 |
+
f"Model B Prediction: {result} (Confidence: {confidence:.1f}%)\n\n"
|
413 |
+
f"Expert Advice:\n{advice}\n\n"
|
414 |
f"[View Model B & Classifier Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)"
|
415 |
)
|
416 |
+
|
417 |
else:
|
418 |
return "Invalid version selected."
|
419 |
|
|
|
424 |
# ===== CSS for Theme Switching =====
|
425 |
light_css = """
|
426 |
<style>
|
427 |
+
body { background-color: white; color: black; }
|
428 |
+
.gr-button { background-color: #4CAF50; color: white; }
|
429 |
+
.gr-input, .gr-textbox, .gr-dropdown, .gr-radio, .gr-markdown, .gr-container { background-color: white; color: black; }
|
430 |
</style>
|
431 |
"""
|
432 |
|
433 |
dark_css = """
|
434 |
<style>
|
435 |
+
body { background-color: #121212 !important; color: #e0e0e0 !important; }
|
436 |
+
.gr-button { background-color: #555 !important; color: white !important; }
|
437 |
+
.gr-input, .gr-textbox, .gr-dropdown, .gr-radio, .gr-markdown, .gr-container { background-color: #333 !important; color: #e0e0e0 !important; }
|
438 |
</style>
|
439 |
"""
|
440 |
|
|
|
448 |
with gr.Blocks() as demo:
|
449 |
# Hidden element for CSS injection (initially Light theme)
|
450 |
css_injector = gr.HTML(update_css("Light"))
|
451 |
+
|
452 |
+
gr.Markdown("# πΏ FarMVi8ioN β AI-powered Crop Monitoring")
|
453 |
gr.Markdown("Detect tomato leaf diseases and get actionable advice on how to curb them.")
|
454 |
+
|
455 |
+
with gr.Tabs():
|
456 |
+
# === Disease Detection Tab ===
|
457 |
+
with gr.TabItem("Disease Detection"):
|
458 |
+
with gr.Row():
|
459 |
+
# ----- Left Column (β30%) -----
|
460 |
+
with gr.Column(scale=1):
|
461 |
+
version = gr.Dropdown(
|
462 |
+
choices=["1.1", "1.2", "1.3", "2.1", "2.2", "2.3"],
|
463 |
+
label="Select Version",
|
464 |
+
value="1.3",
|
465 |
+
info="Versions 1.x use Model A; Versions 2.x use Model B."
|
466 |
+
)
|
467 |
+
|
468 |
+
theme_choice = gr.Radio(
|
469 |
+
choices=["Light", "Dark"],
|
470 |
+
label="Select Theme",
|
471 |
+
value="Light"
|
472 |
+
)
|
473 |
+
|
474 |
+
gr.Markdown("### Notebook Links")
|
475 |
+
gr.Markdown(
|
476 |
+
"""
|
477 |
+
**For Model A:**
|
478 |
+
- Model A Only: [Training Notebook](https://colab.research.google.com/drive/1FMjs7JmdO6WVoXbzLA-ymwnIKq-GaV6w?usp=sharing)
|
479 |
+
- Model A & Classifier: [Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)
|
480 |
+
|
481 |
+
**For Model B:**
|
482 |
+
- Model B Only: [Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)
|
483 |
+
- Model B & Classifier: [Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)
|
484 |
+
"""
|
485 |
+
)
|
486 |
+
|
487 |
+
# ----- Right Column (β70%) -----
|
488 |
+
with gr.Column(scale=2):
|
489 |
+
image_input = gr.Image(label="π Upload Tomato Leaf Image", type="pil")
|
490 |
+
camera_input = gr.Image(label="πΈ Use Camera (Live Preview)", type="pil", sources=["webcam"])
|
491 |
+
submit = gr.Button("π Analyze", variant="primary")
|
492 |
+
output = gr.Markdown(label="π Diagnosis & Advice")
|
493 |
+
|
494 |
+
# === Farmer Chat Tab ===
|
495 |
+
with gr.TabItem("Chat with Farm Assistant"):
|
496 |
+
gr.Markdown("# π¬ Chat with Farm Assistant")
|
497 |
+
gr.Markdown("Ask any questions about farming, crop diseases, or agricultural practices.")
|
498 |
+
|
499 |
+
chatbot = gr.Chatbot(
|
500 |
+
label="Chat History",
|
501 |
+
height=400,
|
502 |
+
bubble_full_width=False,
|
503 |
+
show_copy_button=True
|
504 |
)
|
505 |
+
|
506 |
+
with gr.Row():
|
507 |
+
chat_input = gr.Textbox(
|
508 |
+
label="Your Question",
|
509 |
+
placeholder="Ask about tomato farming, diseases, or agricultural practices...",
|
510 |
+
lines=2
|
511 |
+
)
|
512 |
+
chat_button = gr.Button("Send", variant="primary")
|
513 |
+
|
514 |
+
gr.Markdown("""
|
515 |
+
### Example Questions:
|
516 |
+
- How often should I water my tomato plants?
|
517 |
+
- What's the best fertilizer for tomatoes?
|
518 |
+
- How do I prevent early blight?
|
519 |
+
- What are the signs of nutrient deficiency in tomatoes?
|
520 |
+
""")
|
521 |
+
|
522 |
+
# Update CSS dynamically based on theme selection
|
523 |
theme_choice.change(fn=update_css, inputs=theme_choice, outputs=css_injector)
|
524 |
+
|
525 |
+
# When submit is clicked, combine image inputs and process the selected version
|
526 |
submit.click(
|
527 |
fn=lambda uploaded, camera, ver: process_version(combine_images(uploaded, camera), ver),
|
528 |
inputs=[image_input, camera_input, version],
|
529 |
outputs=output
|
530 |
)
|
531 |
|
532 |
+
# Chat functionality
|
533 |
+
chat_button.click(
|
534 |
+
fn=chat_with_farmer,
|
535 |
+
inputs=[chat_input, chatbot],
|
536 |
+
outputs=[chat_input, chatbot]
|
537 |
+
)
|
538 |
+
|
539 |
+
# Also allow pressing Enter to send chat
|
540 |
+
chat_input.submit(
|
541 |
+
fn=chat_with_farmer,
|
542 |
+
inputs=[chat_input, chatbot],
|
543 |
+
outputs=[chat_input, chatbot]
|
544 |
+
)
|
545 |
+
|
546 |
+
# Launch the app
|
547 |
demo.launch()
|