Spaces:
Sleeping
Sleeping
Update app.py with real-time chat functionality
Browse files
app.py
CHANGED
@@ -1,26 +1,42 @@
|
|
1 |
import os
|
2 |
-
import gradio as gr
|
3 |
import numpy as np
|
|
|
|
|
|
|
4 |
import requests
|
5 |
import json
|
6 |
-
import time
|
7 |
-
from tensorflow.keras.models import load_model
|
8 |
-
from PIL import Image
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
disease_info = {
|
20 |
"Tomato Bacterial Spot": {
|
21 |
"description": "A bacterial disease that causes small, dark spots on leaves, stems, and fruits.",
|
22 |
"causes": "Caused by Xanthomonas bacteria, spread by water splash, contaminated tools, and seeds.",
|
23 |
-
"
|
24 |
"Remove and destroy infected plants",
|
25 |
"Rotate crops with non-solanaceous plants",
|
26 |
"Use copper-based fungicides",
|
@@ -30,7 +46,7 @@ disease_info = {
|
|
30 |
"Tomato Early Blight": {
|
31 |
"description": "A fungal disease that causes dark spots with concentric rings on lower leaves first.",
|
32 |
"causes": "Caused by Alternaria solani fungus, favored by warm, humid conditions.",
|
33 |
-
"
|
34 |
"Remove infected leaves promptly",
|
35 |
"Improve air circulation around plants",
|
36 |
"Apply fungicides preventatively",
|
@@ -40,7 +56,7 @@ disease_info = {
|
|
40 |
"Tomato Late Blight": {
|
41 |
"description": "A devastating fungal disease that causes dark, water-soaked lesions on leaves and fruits.",
|
42 |
"causes": "Caused by Phytophthora infestans, favored by cool, wet conditions.",
|
43 |
-
"
|
44 |
"Remove and destroy infected plants immediately",
|
45 |
"Apply fungicides preventatively in humid conditions",
|
46 |
"Improve drainage and air circulation",
|
@@ -50,7 +66,7 @@ disease_info = {
|
|
50 |
"Tomato Mosaic Virus": {
|
51 |
"description": "A viral disease that causes mottled green/yellow patterns on leaves and stunted growth.",
|
52 |
"causes": "Caused by tobacco mosaic virus (TMV), spread by handling, tools, and sometimes seeds.",
|
53 |
-
"
|
54 |
"Remove and destroy infected plants",
|
55 |
"Wash hands and tools after handling infected plants",
|
56 |
"Control insect vectors like aphids",
|
@@ -60,295 +76,188 @@ disease_info = {
|
|
60 |
"Tomato Yellow Leaf Curl Virus": {
|
61 |
"description": "A viral disease transmitted by whiteflies that causes yellowing and curling of leaves.",
|
62 |
"causes": "Caused by a begomovirus, transmitted primarily by whiteflies.",
|
63 |
-
"
|
64 |
"Use whitefly control measures",
|
65 |
"Remove and destroy infected plants",
|
66 |
"Use reflective mulches to repel whiteflies",
|
67 |
"Plant resistant varieties"
|
68 |
]
|
69 |
-
},
|
70 |
-
"Tomato___Target_Spot": {
|
71 |
-
"description": "A fungal disease causing circular lesions with concentric rings on leaves, stems, and fruits.",
|
72 |
-
"causes": "Caused by Corynespora cassiicola fungus, favored by warm, humid conditions.",
|
73 |
-
"treatment": [
|
74 |
-
"Remove infected plant parts",
|
75 |
-
"Improve air circulation",
|
76 |
-
"Apply fungicides at first sign of disease",
|
77 |
-
"Avoid overhead irrigation"
|
78 |
-
]
|
79 |
-
},
|
80 |
-
"Tomato___Bacterial_spot": {
|
81 |
-
"description": "A bacterial disease causing small, dark, water-soaked spots on leaves, stems, and fruits.",
|
82 |
-
"causes": "Caused by Xanthomonas species, spread by water splash and contaminated tools.",
|
83 |
-
"treatment": [
|
84 |
-
"Remove infected plant debris",
|
85 |
-
"Use copper-based bactericides",
|
86 |
-
"Rotate crops",
|
87 |
-
"Use disease-free seeds and transplants"
|
88 |
-
]
|
89 |
-
},
|
90 |
-
"Tomato___healthy": {
|
91 |
-
"description": "The plant shows no signs of disease and appears to be in good health.",
|
92 |
-
"causes": "Proper growing conditions, good management practices, and disease prevention.",
|
93 |
-
"treatment": [
|
94 |
-
"Continue regular watering and fertilization",
|
95 |
-
"Monitor for early signs of disease",
|
96 |
-
"Maintain good air circulation",
|
97 |
-
"Practice crop rotation"
|
98 |
-
]
|
99 |
}
|
100 |
}
|
101 |
|
102 |
-
#
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
0: "Tomato___Target_Spot",
|
131 |
-
1: "Tomato___Bacterial_spot",
|
132 |
-
2: "Tomato___Early_blight",
|
133 |
-
3: "Tomato___healthy",
|
134 |
-
4: "Tomato___Late_blight"
|
135 |
-
}
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
img = preprocess_image(image)
|
147 |
-
pred = model_b.predict(img)
|
148 |
-
predicted_class = np.argmax(pred)
|
149 |
-
confidence = float(np.max(pred) * 100)
|
150 |
-
return disease_labels_b.get(predicted_class, "Unknown result"), confidence
|
151 |
-
|
152 |
-
def predict_classifier(image):
|
153 |
-
img = preprocess_image(image)
|
154 |
-
pred = classifier_model.predict(img)
|
155 |
-
# Here we assume the classifier returns class 1 for "Tomato Leaf"
|
156 |
-
return "Tomato Leaf" if np.argmax(pred) == 1 else "Not Tomato Leaf"
|
157 |
-
|
158 |
-
# ===== AI Model API Calls =====
|
159 |
-
def get_ai_advice(prompt, retries=2):
|
160 |
-
"""Try multiple AI models with fallback mechanisms"""
|
161 |
-
|
162 |
-
# Try Groq API first (if key available)
|
163 |
-
if GROQ_API_KEY:
|
164 |
-
try:
|
165 |
-
headers = {
|
166 |
-
"Authorization": f"Bearer {GROQ_API_KEY}",
|
167 |
-
"Content-Type": "application/json"
|
168 |
-
}
|
169 |
-
|
170 |
-
payload = {
|
171 |
-
"model": "llama3-8b-8192", # Using Llama 3 8B model
|
172 |
-
"messages": [
|
173 |
-
{"role": "system", "content": "You are an expert agricultural advisor specializing in tomato farming."},
|
174 |
-
{"role": "user", "content": prompt}
|
175 |
-
],
|
176 |
-
"max_tokens": 800,
|
177 |
-
"temperature": 0.7
|
178 |
-
}
|
179 |
-
|
180 |
-
response = requests.post(
|
181 |
-
"https://api.groq.com/openai/v1/chat/completions",
|
182 |
-
headers=headers,
|
183 |
-
json=payload,
|
184 |
-
timeout=30
|
185 |
-
)
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
except Exception as e:
|
195 |
-
print(f"Error with Groq API: {str(e)}")
|
196 |
-
|
197 |
-
# Try Hugging Face Inference API as first fallback (if token available)
|
198 |
-
if HF_API_TOKEN:
|
199 |
-
try:
|
200 |
-
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
201 |
-
|
202 |
-
# Format prompt for instruction-tuned models
|
203 |
-
formatted_prompt = f"""<s>[INST] {prompt} [/INST]"""
|
204 |
-
|
205 |
-
payload = {
|
206 |
-
"inputs": formatted_prompt,
|
207 |
-
"parameters": {
|
208 |
-
"max_new_tokens": 800,
|
209 |
-
"temperature": 0.7,
|
210 |
-
"top_p": 0.95,
|
211 |
-
"do_sample": True
|
212 |
-
}
|
213 |
-
}
|
214 |
-
|
215 |
-
# Try Mistral model first
|
216 |
-
url = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
217 |
-
|
218 |
-
response = requests.post(url, headers=headers, json=payload, timeout=30)
|
219 |
-
|
220 |
-
if response.status_code == 200:
|
221 |
-
result = response.json()
|
222 |
-
if isinstance(result, list) and len(result) > 0:
|
223 |
-
if "generated_text" in result[0]:
|
224 |
-
# Extract just the response part (after the prompt)
|
225 |
-
generated_text = result[0]["generated_text"]
|
226 |
-
# Remove the prompt from the response
|
227 |
-
response_text = generated_text.split("[/INST]")[-1].strip()
|
228 |
-
return response_text
|
229 |
-
|
230 |
-
# If Mistral fails, try Llama 3
|
231 |
-
url = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
232 |
-
response = requests.post(url, headers=headers, json=payload, timeout=30)
|
233 |
-
|
234 |
-
if response.status_code == 200:
|
235 |
-
result = response.json()
|
236 |
-
if isinstance(result, list) and len(result) > 0:
|
237 |
-
if "generated_text" in result[0]:
|
238 |
-
generated_text = result[0]["generated_text"]
|
239 |
-
response_text = generated_text.split("[/INST]")[-1].strip()
|
240 |
-
return response_text
|
241 |
-
|
242 |
-
except Exception as e:
|
243 |
-
print(f"Error with Hugging Face API: {str(e)}")
|
244 |
-
|
245 |
-
# Try OpenAI API as final fallback (if key available)
|
246 |
-
if OPENAI_API_KEY:
|
247 |
-
try:
|
248 |
-
headers = {
|
249 |
-
"Authorization": f"Bearer {OPENAI_API_KEY}",
|
250 |
-
"Content-Type": "application/json"
|
251 |
-
}
|
252 |
-
|
253 |
-
payload = {
|
254 |
-
"model": "gpt-3.5-turbo",
|
255 |
-
"messages": [
|
256 |
-
{"role": "system", "content": "You are an expert agricultural advisor specializing in tomato farming."},
|
257 |
-
{"role": "user", "content": prompt}
|
258 |
-
],
|
259 |
-
"max_tokens": 800,
|
260 |
-
"temperature": 0.7
|
261 |
-
}
|
262 |
-
|
263 |
-
response = requests.post(
|
264 |
-
"https://api.openai.com/v1/chat/completions",
|
265 |
-
headers=headers,
|
266 |
-
json=payload,
|
267 |
-
timeout=30
|
268 |
-
)
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
|
275 |
-
|
276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
-
#
|
279 |
-
|
280 |
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
# {disease_name}
|
285 |
|
286 |
## Description
|
287 |
{info['description']}
|
288 |
|
289 |
## Causes
|
290 |
-
{info
|
291 |
|
292 |
## Recommended Treatment
|
293 |
-
{chr(10).join(f"- {rec}" for rec in info['
|
294 |
|
295 |
-
*Note: This is fallback information
|
296 |
-
"""
|
297 |
-
else:
|
298 |
-
# Generic fallback response
|
299 |
-
return """
|
300 |
-
# Agricultural Advice
|
301 |
-
|
302 |
-
I apologize, but I'm currently unable to connect to our AI service. Here are some general tips for tomato plant care:
|
303 |
-
|
304 |
-
## General Tomato Care Tips
|
305 |
-
- Water consistently, aiming for 1-2 inches per week
|
306 |
-
- Provide support with stakes or cages
|
307 |
-
- Fertilize regularly with balanced fertilizer
|
308 |
-
- Remove suckers for indeterminate varieties
|
309 |
-
- Monitor for pests and diseases regularly
|
310 |
-
- Ensure good air circulation between plants
|
311 |
-
- Mulch to retain moisture and prevent soil-borne diseases
|
312 |
-
|
313 |
-
Please try again later for more specific advice.
|
314 |
"""
|
315 |
|
316 |
-
|
317 |
-
def generate_disease_advice(disease_name, confidence):
|
318 |
-
"""Generate advice for a specific disease with confidence level."""
|
319 |
-
if "healthy" in disease_name.lower():
|
320 |
-
prompt = (
|
321 |
-
"You are an agricultural advisor speaking to a farmer. "
|
322 |
-
"The tomato crop appears healthy. "
|
323 |
-
"Provide detailed preventive tips and best practices for maintaining tomato crop health. "
|
324 |
-
"Include information about watering, fertilization, pest prevention, and optimal growing conditions. "
|
325 |
-
"Format your response in clear sections with bullet points where appropriate."
|
326 |
-
)
|
327 |
-
else:
|
328 |
-
prompt = (
|
329 |
-
f"You are an agricultural advisor speaking to a farmer. "
|
330 |
-
f"A disease has been detected in their tomato crop: {disease_name} with {confidence:.1f}% confidence. "
|
331 |
-
f"Provide detailed advice on how to identify, manage and treat this disease. "
|
332 |
-
f"Include information about: "
|
333 |
-
f"1) What causes this disease "
|
334 |
-
f"2) How it spreads "
|
335 |
-
f"3) Specific treatments (both organic and chemical options) "
|
336 |
-
f"4) Preventive measures for the future "
|
337 |
-
f"Format your response in clear sections with bullet points where appropriate."
|
338 |
-
)
|
339 |
-
|
340 |
-
return get_ai_advice(prompt)
|
341 |
|
342 |
-
|
|
|
343 |
"""Handle chat interactions with farmers about agricultural topics."""
|
344 |
if not message.strip():
|
345 |
return "", chat_history
|
346 |
|
347 |
-
# Prepare context from chat history
|
348 |
-
context = "\n".join([f"Farmer: {q}\
|
349 |
|
350 |
prompt = (
|
351 |
-
f"You are
|
352 |
f"You provide helpful, accurate, and practical advice to farmers. "
|
353 |
f"Always be respectful and considerate of farmers' knowledge while providing expert guidance. "
|
354 |
f"If you're unsure about something, acknowledge it and provide the best information you can. "
|
@@ -357,191 +266,106 @@ def chat_with_farmer(message, chat_history):
|
|
357 |
f"Provide a helpful, informative response about farming, focusing on tomatoes if relevant."
|
358 |
)
|
359 |
|
360 |
-
|
361 |
-
|
362 |
-
return "", chat_history
|
363 |
|
364 |
-
#
|
365 |
-
|
366 |
-
|
367 |
-
return "No image provided."
|
368 |
-
|
369 |
-
# --- Version 1.x (Model A) ---
|
370 |
-
if version == "1.1":
|
371 |
-
result, confidence = predict_model_a(image)
|
372 |
-
return f"Model A Prediction: {result} (Confidence: {confidence:.1f}%)\n\nView Model A Training Notebook: https://colab.research.google.com/drive/1FMjs7JmdO6WVoXbzLA-ymwnIKq-GaV6w?usp=sharing"
|
373 |
-
|
374 |
-
elif version == "1.2":
|
375 |
-
result, confidence = predict_model_a(image)
|
376 |
-
advice = generate_disease_advice(result, confidence)
|
377 |
-
return f"Model A Prediction: {result} (Confidence: {confidence:.1f}%)\n\nExpert Advice:\n{advice}"
|
378 |
-
|
379 |
-
elif version == "1.3":
|
380 |
-
cls_result = predict_classifier(image)
|
381 |
-
if cls_result != "Tomato Leaf":
|
382 |
-
return "Classifier: The image is not a tomato leaf. Please try again with a tomato leaf image."
|
383 |
-
|
384 |
-
result, confidence = predict_model_a(image)
|
385 |
-
advice = generate_disease_advice(result, confidence)
|
386 |
-
return (
|
387 |
-
f"Classifier: {cls_result}\n"
|
388 |
-
f"Model A Prediction: {result} (Confidence: {confidence:.1f}%)\n\n"
|
389 |
-
f"Expert Advice:\n{advice}\n\n"
|
390 |
-
f"[View Model A & Classifier Training Notebook](https://colab.research.google.com/drive/1FMjs7JmdO6WVoXbzLA-ymwnIKq-GaV6w?usp=sharing)"
|
391 |
-
)
|
392 |
|
393 |
-
|
394 |
-
|
395 |
-
result, confidence = predict_model_b(image)
|
396 |
-
return f"Model B Prediction: {result} (Confidence: {confidence:.1f}%)\n\n[View Model B Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)"
|
397 |
-
|
398 |
-
elif version == "2.2":
|
399 |
-
result, confidence = predict_model_b(image)
|
400 |
-
advice = generate_disease_advice(result, confidence)
|
401 |
-
return f"Model B Prediction: {result} (Confidence: {confidence:.1f}%)\n\nExpert Advice:\n{advice}"
|
402 |
-
|
403 |
-
elif version == "2.3":
|
404 |
-
cls_result = predict_classifier(image)
|
405 |
-
if cls_result != "Tomato Leaf":
|
406 |
-
return "Classifier: The image is not a tomato leaf. Please try again with a tomato leaf image."
|
407 |
-
|
408 |
-
result, confidence = predict_model_b(image)
|
409 |
-
advice = generate_disease_advice(result, confidence)
|
410 |
-
return (
|
411 |
-
f"Classifier: {cls_result}\n"
|
412 |
-
f"Model B Prediction: {result} (Confidence: {confidence:.1f}%)\n\n"
|
413 |
-
f"Expert Advice:\n{advice}\n\n"
|
414 |
-
f"[View Model B & Classifier Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)"
|
415 |
-
)
|
416 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
else:
|
418 |
-
|
419 |
-
|
420 |
-
# ===== Helper Function to Choose Between Uploaded & Camera Image =====
|
421 |
-
def combine_images(uploaded, camera):
|
422 |
-
return camera if camera is not None else uploaded
|
423 |
-
|
424 |
-
# ===== CSS for Theme Switching =====
|
425 |
-
light_css = """
|
426 |
-
<style>
|
427 |
-
body { background-color: white; color: black; }
|
428 |
-
.gr-button { background-color: #4CAF50; color: white; }
|
429 |
-
.gr-input, .gr-textbox, .gr-dropdown, .gr-radio, .gr-markdown, .gr-container { background-color: white; color: black; }
|
430 |
-
</style>
|
431 |
-
"""
|
432 |
|
433 |
-
|
434 |
-
|
435 |
-
body { background-color: #121212 !important; color: #e0e0e0 !important; }
|
436 |
-
.gr-button { background-color: #555 !important; color: white !important; }
|
437 |
-
.gr-input, .gr-textbox, .gr-dropdown, .gr-radio, .gr-markdown, .gr-container { background-color: #333 !important; color: #e0e0e0 !important; }
|
438 |
-
</style>
|
439 |
-
"""
|
440 |
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
return light_css
|
446 |
|
447 |
-
#
|
448 |
with gr.Blocks() as demo:
|
449 |
-
#
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
with gr.Tabs():
|
456 |
-
# === Disease Detection Tab ===
|
457 |
-
with gr.TabItem("Disease Detection"):
|
458 |
-
with gr.Row():
|
459 |
-
# ----- Left Column (≈30%) -----
|
460 |
-
with gr.Column(scale=1):
|
461 |
-
version = gr.Dropdown(
|
462 |
-
choices=["1.1", "1.2", "1.3", "2.1", "2.2", "2.3"],
|
463 |
-
label="Select Version",
|
464 |
-
value="1.3",
|
465 |
-
info="Versions 1.x use Model A; Versions 2.x use Model B."
|
466 |
-
)
|
467 |
-
|
468 |
-
theme_choice = gr.Radio(
|
469 |
-
choices=["Light", "Dark"],
|
470 |
-
label="Select Theme",
|
471 |
-
value="Light"
|
472 |
-
)
|
473 |
-
|
474 |
-
gr.Markdown("### Notebook Links")
|
475 |
-
gr.Markdown(
|
476 |
-
"""
|
477 |
-
**For Model A:**
|
478 |
-
- Model A Only: [Training Notebook](https://colab.research.google.com/drive/1FMjs7JmdO6WVoXbzLA-ymwnIKq-GaV6w?usp=sharing)
|
479 |
-
- Model A & Classifier: [Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)
|
480 |
-
|
481 |
-
**For Model B:**
|
482 |
-
- Model B Only: [Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)
|
483 |
-
- Model B & Classifier: [Training Notebook](https://colab.research.google.com/drive/1CvoQY40gK2YsMgt4wq9kM2ZSO2c4lzFU?usp=sharing)
|
484 |
-
"""
|
485 |
-
)
|
486 |
-
|
487 |
-
# ----- Right Column (≈70%) -----
|
488 |
-
with gr.Column(scale=2):
|
489 |
-
image_input = gr.Image(label="📂 Upload Tomato Leaf Image", type="pil")
|
490 |
-
camera_input = gr.Image(label="📸 Use Camera (Live Preview)", type="pil", sources=["webcam"])
|
491 |
-
submit = gr.Button("🔍 Analyze", variant="primary")
|
492 |
-
output = gr.Markdown(label="📝 Diagnosis & Advice")
|
493 |
-
|
494 |
-
# === Farmer Chat Tab ===
|
495 |
-
with gr.TabItem("Chat with Farm Assistant"):
|
496 |
-
gr.Markdown("# 💬 Chat with Farm Assistant")
|
497 |
-
gr.Markdown("Ask any questions about farming, crop diseases, or agricultural practices.")
|
498 |
-
|
499 |
-
chatbot = gr.Chatbot(
|
500 |
-
label="Chat History",
|
501 |
-
height=400,
|
502 |
-
bubble_full_width=False,
|
503 |
-
show_copy_button=True
|
504 |
-
)
|
505 |
|
506 |
-
|
507 |
-
|
508 |
-
label="
|
509 |
-
|
510 |
-
lines=2
|
511 |
)
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
530 |
)
|
531 |
|
532 |
# Chat functionality
|
533 |
chat_button.click(
|
534 |
-
fn=
|
535 |
inputs=[chat_input, chatbot],
|
536 |
outputs=[chat_input, chatbot]
|
537 |
)
|
538 |
|
539 |
# Also allow pressing Enter to send chat
|
540 |
chat_input.submit(
|
541 |
-
fn=
|
542 |
inputs=[chat_input, chatbot],
|
543 |
outputs=[chat_input, chatbot]
|
544 |
)
|
545 |
|
546 |
-
# Launch the app
|
547 |
demo.launch()
|
|
|
1 |
import os
|
|
|
2 |
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.preprocessing import image
|
5 |
+
import gradio as gr
|
6 |
import requests
|
7 |
import json
|
|
|
|
|
|
|
8 |
|
9 |
+
# Suppress TensorFlow warnings
|
10 |
+
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
11 |
+
device = "cuda" if tf.test.is_gpu_available() else "cpu"
|
12 |
+
print(f"Running on: {device.upper()}")
|
13 |
+
|
14 |
+
# Groq API key for AI assistant
|
15 |
+
GROQ_API_KEY = "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"
|
16 |
+
GROQ_MODEL = "llama3-70b-8192" # Using Llama 3 70B model
|
17 |
|
18 |
+
# Fallback to Hugging Face token if Groq fails
|
19 |
+
HF_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
20 |
+
print(f"API tokens available: Groq=Yes, HF={'Yes' if HF_API_TOKEN else 'No'}")
|
21 |
|
22 |
+
# Load the trained tomato disease detection model
|
23 |
+
model = tf.keras.models.load_model("Tomato_Leaf_Disease_Model.h5")
|
24 |
+
|
25 |
+
# Disease categories
|
26 |
+
class_labels = [
|
27 |
+
"Tomato Bacterial Spot",
|
28 |
+
"Tomato Early Blight",
|
29 |
+
"Tomato Late Blight",
|
30 |
+
"Tomato Mosaic Virus",
|
31 |
+
"Tomato Yellow Leaf Curl Virus"
|
32 |
+
]
|
33 |
+
|
34 |
+
# Disease information database (fallback if API fails)
|
35 |
disease_info = {
|
36 |
"Tomato Bacterial Spot": {
|
37 |
"description": "A bacterial disease that causes small, dark spots on leaves, stems, and fruits.",
|
38 |
"causes": "Caused by Xanthomonas bacteria, spread by water splash, contaminated tools, and seeds.",
|
39 |
+
"recommendations": [
|
40 |
"Remove and destroy infected plants",
|
41 |
"Rotate crops with non-solanaceous plants",
|
42 |
"Use copper-based fungicides",
|
|
|
46 |
"Tomato Early Blight": {
|
47 |
"description": "A fungal disease that causes dark spots with concentric rings on lower leaves first.",
|
48 |
"causes": "Caused by Alternaria solani fungus, favored by warm, humid conditions.",
|
49 |
+
"recommendations": [
|
50 |
"Remove infected leaves promptly",
|
51 |
"Improve air circulation around plants",
|
52 |
"Apply fungicides preventatively",
|
|
|
56 |
"Tomato Late Blight": {
|
57 |
"description": "A devastating fungal disease that causes dark, water-soaked lesions on leaves and fruits.",
|
58 |
"causes": "Caused by Phytophthora infestans, favored by cool, wet conditions.",
|
59 |
+
"recommendations": [
|
60 |
"Remove and destroy infected plants immediately",
|
61 |
"Apply fungicides preventatively in humid conditions",
|
62 |
"Improve drainage and air circulation",
|
|
|
66 |
"Tomato Mosaic Virus": {
|
67 |
"description": "A viral disease that causes mottled green/yellow patterns on leaves and stunted growth.",
|
68 |
"causes": "Caused by tobacco mosaic virus (TMV), spread by handling, tools, and sometimes seeds.",
|
69 |
+
"recommendations": [
|
70 |
"Remove and destroy infected plants",
|
71 |
"Wash hands and tools after handling infected plants",
|
72 |
"Control insect vectors like aphids",
|
|
|
76 |
"Tomato Yellow Leaf Curl Virus": {
|
77 |
"description": "A viral disease transmitted by whiteflies that causes yellowing and curling of leaves.",
|
78 |
"causes": "Caused by a begomovirus, transmitted primarily by whiteflies.",
|
79 |
+
"recommendations": [
|
80 |
"Use whitefly control measures",
|
81 |
"Remove and destroy infected plants",
|
82 |
"Use reflective mulches to repel whiteflies",
|
83 |
"Plant resistant varieties"
|
84 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
}
|
86 |
}
|
87 |
|
88 |
+
# Image preprocessing function
|
89 |
+
def preprocess_image(img):
|
90 |
+
img = img.resize((224, 224)) # Resize for model input
|
91 |
+
img = image.img_to_array(img) / 255.0 # Normalize
|
92 |
+
return np.expand_dims(img, axis=0) # Add batch dimension
|
93 |
+
|
94 |
+
# Temperature Scaling: Adjusts predictions using a temperature parameter.
|
95 |
+
def apply_temperature_scaling(prediction, temperature):
|
96 |
+
# Avoid log(0) by adding a small epsilon
|
97 |
+
eps = 1e-8
|
98 |
+
scaled_logits = np.log(np.maximum(prediction, eps)) / temperature
|
99 |
+
exp_logits = np.exp(scaled_logits)
|
100 |
+
scaled_probs = exp_logits / np.sum(exp_logits)
|
101 |
+
return scaled_probs
|
102 |
+
|
103 |
+
# Min-Max Normalization: Scales the raw confidence based on provided min and max values.
|
104 |
+
def apply_min_max_scaling(confidence, min_conf, max_conf):
|
105 |
+
norm = (confidence - min_conf) / (max_conf - min_conf) * 100
|
106 |
+
norm = np.clip(norm, 0, 100)
|
107 |
+
return norm
|
108 |
+
|
109 |
+
# Call Groq API for AI assistant
|
110 |
+
def call_groq_api(prompt):
|
111 |
+
"""Call Groq API for detailed disease analysis and advice"""
|
112 |
+
headers = {
|
113 |
+
"Authorization": f"Bearer {GROQ_API_KEY}",
|
114 |
+
"Content-Type": "application/json"
|
115 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
payload = {
|
118 |
+
"model": GROQ_MODEL,
|
119 |
+
"messages": [
|
120 |
+
{"role": "system", "content": "You are an expert agricultural advisor specializing in tomato farming and plant diseases."},
|
121 |
+
{"role": "user", "content": prompt}
|
122 |
+
],
|
123 |
+
"max_tokens": 800,
|
124 |
+
"temperature": 0.7
|
125 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
try:
|
128 |
+
response = requests.post(
|
129 |
+
"https://api.groq.com/openai/v1/chat/completions",
|
130 |
+
headers=headers,
|
131 |
+
json=payload,
|
132 |
+
timeout=30
|
133 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
+
if response.status_code == 200:
|
136 |
+
result = response.json()
|
137 |
+
if "choices" in result and len(result["choices"]) > 0:
|
138 |
+
return result["choices"][0]["message"]["content"]
|
139 |
+
|
140 |
+
print(f"Groq API error: {response.status_code} - {response.text}")
|
141 |
+
return None
|
142 |
+
|
143 |
+
except Exception as e:
|
144 |
+
print(f"Error with Groq API: {str(e)}")
|
145 |
+
return None
|
146 |
+
|
147 |
+
# Fallback to Hugging Face if Groq fails
|
148 |
+
def call_hf_model(prompt, model_id="mistralai/Mistral-7B-Instruct-v0.2"):
|
149 |
+
"""Call an AI model on Hugging Face for detailed disease analysis."""
|
150 |
+
if not HF_API_TOKEN:
|
151 |
+
return None
|
152 |
+
|
153 |
+
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
154 |
+
|
155 |
+
# Format prompt for instruction-tuned models
|
156 |
+
formatted_prompt = f"""<s>[INST] {prompt} [/INST]"""
|
157 |
+
|
158 |
+
payload = {
|
159 |
+
"inputs": formatted_prompt,
|
160 |
+
"parameters": {
|
161 |
+
"max_new_tokens": 500,
|
162 |
+
"temperature": 0.7,
|
163 |
+
"top_p": 0.95,
|
164 |
+
"do_sample": True
|
165 |
+
}
|
166 |
+
}
|
167 |
|
168 |
+
url = f"https://api-inference.huggingface.co/models/{model_id}"
|
169 |
+
|
170 |
+
try:
|
171 |
+
response = requests.post(url, headers=headers, json=payload, timeout=30)
|
172 |
+
|
173 |
+
if response.status_code == 200:
|
174 |
+
result = response.json()
|
175 |
+
if isinstance(result, list) and len(result) > 0:
|
176 |
+
if "generated_text" in result[0]:
|
177 |
+
# Extract just the response part (after the prompt)
|
178 |
+
generated_text = result[0]["generated_text"]
|
179 |
+
# Remove the prompt from the response
|
180 |
+
response_text = generated_text.split("[/INST]")[-1].strip()
|
181 |
+
return response_text
|
182 |
+
|
183 |
+
return None
|
184 |
+
|
185 |
+
except Exception as e:
|
186 |
+
print(f"Exception when calling HF model: {str(e)}")
|
187 |
+
return None
|
188 |
+
|
189 |
+
# Combined AI model call with fallback
|
190 |
+
def call_ai_model(prompt):
|
191 |
+
"""Call AI models with fallback mechanisms"""
|
192 |
+
# Try Groq first
|
193 |
+
response = call_groq_api(prompt)
|
194 |
+
if response:
|
195 |
+
return response
|
196 |
+
|
197 |
+
# If Groq fails, try Hugging Face
|
198 |
+
response = call_hf_model(prompt)
|
199 |
+
if response:
|
200 |
+
return response
|
201 |
+
|
202 |
+
# If both fail, return fallback message
|
203 |
+
return "Sorry, I'm having trouble connecting to the AI service. Using fallback information instead."
|
204 |
+
|
205 |
+
# Generate AI response for disease analysis
|
206 |
+
def generate_ai_response(disease_name, confidence):
|
207 |
+
"""Generate a detailed AI response about the detected disease."""
|
208 |
+
# Get fallback information in case AI call fails
|
209 |
+
info = disease_info.get(disease_name, {
|
210 |
+
"description": "Information not available for this disease.",
|
211 |
+
"causes": "Unknown causes.",
|
212 |
+
"recommendations": ["Consult with a local agricultural extension service."]
|
213 |
+
})
|
214 |
+
|
215 |
+
# Create prompt for AI model
|
216 |
+
prompt = (
|
217 |
+
f"You are an agricultural expert advisor. A tomato plant disease has been detected: {disease_name} "
|
218 |
+
f"with {confidence:.2f}% confidence. "
|
219 |
+
f"Provide a detailed analysis including: "
|
220 |
+
f"1) A brief description of the disease "
|
221 |
+
f"2) What causes it and how it spreads "
|
222 |
+
f"3) The impact on tomato plants and yield "
|
223 |
+
f"4) Detailed treatment options (both organic and chemical) "
|
224 |
+
f"5) Prevention strategies for future crops "
|
225 |
+
f"Format your response in clear sections with bullet points where appropriate."
|
226 |
+
)
|
227 |
|
228 |
+
# Call AI model with fallback mechanisms
|
229 |
+
ai_response = call_ai_model(prompt)
|
230 |
|
231 |
+
# If AI response contains error message, use fallback information
|
232 |
+
if "Sorry, I'm having trouble" in ai_response:
|
233 |
+
ai_response = f"""
|
234 |
+
# Disease: {disease_name}
|
235 |
|
236 |
## Description
|
237 |
{info['description']}
|
238 |
|
239 |
## Causes
|
240 |
+
{info.get('causes', 'Information not available.')}
|
241 |
|
242 |
## Recommended Treatment
|
243 |
+
{chr(10).join(f"- {rec}" for rec in info['recommendations'])}
|
244 |
|
245 |
+
*Note: This is fallback information. For more detailed advice, please try again later when the AI service is available.*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
"""
|
247 |
|
248 |
+
return ai_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
+
# Chat with agricultural expert
|
251 |
+
def chat_with_expert(message, chat_history):
|
252 |
"""Handle chat interactions with farmers about agricultural topics."""
|
253 |
if not message.strip():
|
254 |
return "", chat_history
|
255 |
|
256 |
+
# Prepare context from chat history - use last 3 exchanges for context to avoid token limits
|
257 |
+
context = "\n".join([f"Farmer: {q}\nExpert: {a}" for q, a in chat_history[-3:]])
|
258 |
|
259 |
prompt = (
|
260 |
+
f"You are an expert agricultural advisor specializing in tomato farming and plant diseases. "
|
261 |
f"You provide helpful, accurate, and practical advice to farmers. "
|
262 |
f"Always be respectful and considerate of farmers' knowledge while providing expert guidance. "
|
263 |
f"If you're unsure about something, acknowledge it and provide the best information you can. "
|
|
|
266 |
f"Provide a helpful, informative response about farming, focusing on tomatoes if relevant."
|
267 |
)
|
268 |
|
269 |
+
# Call AI model with fallback mechanisms
|
270 |
+
response = call_ai_model(prompt)
|
|
|
271 |
|
272 |
+
# If AI response contains error message, use fallback response
|
273 |
+
if "Sorry, I'm having trouble" in response:
|
274 |
+
response = "I apologize, but I'm having trouble connecting to my knowledge base at the moment. Please try again later, or ask a different question about tomato farming or plant diseases."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
+
chat_history.append((message, response))
|
277 |
+
return "", chat_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
+
# Main detection function with adjustable confidence scaling
|
280 |
+
def detect_disease_scaled(img, scaling_method, temperature, min_conf, max_conf):
|
281 |
+
processed_img = preprocess_image(img)
|
282 |
+
prediction = model.predict(processed_img)[0] # Get prediction for single image
|
283 |
+
raw_confidence = np.max(prediction) * 100
|
284 |
+
class_idx = np.argmax(prediction)
|
285 |
+
disease_name = class_labels[class_idx]
|
286 |
+
|
287 |
+
if scaling_method == "Temperature Scaling":
|
288 |
+
scaled_probs = apply_temperature_scaling(prediction, temperature)
|
289 |
+
adjusted_confidence = np.max(scaled_probs) * 100
|
290 |
+
elif scaling_method == "Min-Max Normalization":
|
291 |
+
adjusted_confidence = apply_min_max_scaling(raw_confidence, min_conf, max_conf)
|
292 |
else:
|
293 |
+
adjusted_confidence = raw_confidence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
|
295 |
+
# Generate AI response
|
296 |
+
ai_response = generate_ai_response(disease_name, adjusted_confidence)
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
+
# Return results
|
299 |
+
result = f"{disease_name} (Confidence: {adjusted_confidence:.2f}%)"
|
300 |
+
raw_text = f"Raw Confidence: {raw_confidence:.2f}%"
|
301 |
+
return result, raw_text, ai_response
|
|
|
302 |
|
303 |
+
# Simplified Gradio UI for better compatibility
|
304 |
with gr.Blocks() as demo:
|
305 |
+
gr.Markdown("# 🍅 EvSentry8: Tomato Disease Detection with AI Assistant")
|
306 |
+
|
307 |
+
with gr.Tab("Disease Detection"):
|
308 |
+
with gr.Row():
|
309 |
+
with gr.Column():
|
310 |
+
image_input = gr.Image(type="pil", label="Upload a Tomato Leaf Image", sources=["upload", "webcam", "clipboard"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
+
scaling_method = gr.Radio(
|
313 |
+
["Temperature Scaling", "Min-Max Normalization"],
|
314 |
+
label="Confidence Scaling Method",
|
315 |
+
value="Temperature Scaling"
|
|
|
316 |
)
|
317 |
+
temperature_slider = gr.Slider(0.5, 2.0, step=0.1, label="Temperature", value=1.0)
|
318 |
+
min_conf_slider = gr.Slider(0, 100, step=1, label="Min Confidence", value=20)
|
319 |
+
max_conf_slider = gr.Slider(0, 100, step=1, label="Max Confidence", value=90)
|
320 |
+
|
321 |
+
detect_button = gr.Button("Detect Disease")
|
322 |
+
|
323 |
+
with gr.Column():
|
324 |
+
disease_output = gr.Textbox(label="Detected Disease & Adjusted Confidence")
|
325 |
+
raw_confidence_output = gr.Textbox(label="Raw Confidence")
|
326 |
+
ai_response_output = gr.Markdown(label="AI Assistant's Analysis & Recommendations")
|
327 |
+
|
328 |
+
with gr.Tab("Chat with Expert"):
|
329 |
+
gr.Markdown("# 💬 Chat with Agricultural Expert")
|
330 |
+
gr.Markdown("Ask any questions about tomato farming, diseases, or agricultural practices.")
|
331 |
+
|
332 |
+
chatbot = gr.Chatbot(height=400)
|
333 |
+
|
334 |
+
with gr.Row():
|
335 |
+
chat_input = gr.Textbox(
|
336 |
+
label="Your Question",
|
337 |
+
placeholder="Ask about tomato farming, diseases, or agricultural practices...",
|
338 |
+
lines=2
|
339 |
+
)
|
340 |
+
chat_button = gr.Button("Send")
|
341 |
+
|
342 |
+
gr.Markdown("""
|
343 |
+
### Example Questions:
|
344 |
+
- How do I identify tomato bacterial spot?
|
345 |
+
- What's the best way to prevent late blight?
|
346 |
+
- How often should I water my tomato plants?
|
347 |
+
- What are the signs of nutrient deficiency in tomatoes?
|
348 |
+
""")
|
349 |
+
|
350 |
+
# Set up event handlers
|
351 |
+
detect_button.click(
|
352 |
+
detect_disease_scaled,
|
353 |
+
inputs=[image_input, scaling_method, temperature_slider, min_conf_slider, max_conf_slider],
|
354 |
+
outputs=[disease_output, raw_confidence_output, ai_response_output]
|
355 |
)
|
356 |
|
357 |
# Chat functionality
|
358 |
chat_button.click(
|
359 |
+
fn=chat_with_expert,
|
360 |
inputs=[chat_input, chatbot],
|
361 |
outputs=[chat_input, chatbot]
|
362 |
)
|
363 |
|
364 |
# Also allow pressing Enter to send chat
|
365 |
chat_input.submit(
|
366 |
+
fn=chat_with_expert,
|
367 |
inputs=[chat_input, chatbot],
|
368 |
outputs=[chat_input, chatbot]
|
369 |
)
|
370 |
|
|
|
371 |
demo.launch()
|