Spaces:
Runtime error
Runtime error
import pinecone | |
from langchain.vectorstores import Pinecone | |
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings | |
from langchain.llms import OpenAI | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.callbacks import get_openai_callback | |
import joblib | |
#Function to pull index data from Pinecone | |
def pull_from_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings): | |
pinecone.init( | |
api_key=pinecone_apikey, | |
environment=pinecone_environment | |
) | |
index_name = pinecone_index_name | |
index = Pinecone.from_existing_index(index_name, embeddings) | |
return index | |
def create_embeddings(): | |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
return embeddings | |
#This function will help us in fetching the top relevent documents from our vector store - Pinecone Index | |
def get_similar_docs(index,query,k=2): | |
similar_docs = index.similarity_search(query, k=k) | |
return similar_docs | |
def get_answer(docs,user_input): | |
chain = load_qa_chain(OpenAI(), chain_type="stuff") | |
with get_openai_callback() as cb: | |
response = chain.run(input_documents=docs, question=user_input) | |
return response | |
def predict(query_result): | |
Fitmodel = joblib.load('modelsvm.pk1') | |
result=Fitmodel.predict([query_result]) | |
return result[0] |