Jayavathsan commited on
Commit
70cebce
·
1 Parent(s): 2c6308d

Create user_utils.py

Browse files
Files changed (1) hide show
  1. user_utils.py +43 -0
user_utils.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pinecone
2
+ from langchain.vectorstores import Pinecone
3
+ from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
4
+ from langchain.llms import OpenAI
5
+ from langchain.chains.question_answering import load_qa_chain
6
+ from langchain.callbacks import get_openai_callback
7
+ import joblib
8
+
9
+
10
+ #Function to pull index data from Pinecone
11
+ def pull_from_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings):
12
+
13
+ pinecone.init(
14
+ api_key=pinecone_apikey,
15
+ environment=pinecone_environment
16
+ )
17
+
18
+ index_name = pinecone_index_name
19
+
20
+ index = Pinecone.from_existing_index(index_name, embeddings)
21
+ return index
22
+
23
+ def create_embeddings():
24
+ embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
25
+ return embeddings
26
+
27
+ #This function will help us in fetching the top relevent documents from our vector store - Pinecone Index
28
+ def get_similar_docs(index,query,k=2):
29
+
30
+ similar_docs = index.similarity_search(query, k=k)
31
+ return similar_docs
32
+
33
+ def get_answer(docs,user_input):
34
+ chain = load_qa_chain(OpenAI(), chain_type="stuff")
35
+ with get_openai_callback() as cb:
36
+ response = chain.run(input_documents=docs, question=user_input)
37
+ return response
38
+
39
+
40
+ def predict(query_result):
41
+ Fitmodel = joblib.load('modelsvm.pk1')
42
+ result=Fitmodel.predict([query_result])
43
+ return result[0]