File size: 1,914 Bytes
5a6f531 efb2a5c 203a444 be6ab4a 96fb78a efb2a5c 5a6f531 e746e73 5a6f531 e746e73 5a6f531 e746e73 5a6f531 e746e73 5a6f531 203a444 5a6f531 e746e73 5a6f531 e746e73 5a6f531 e746e73 5a6f531 e746e73 5a6f531 e746e73 5a6f531 e746e73 5a6f531 203a444 5a6f531 50cddb6 5a6f531 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# %%
import gradio as gr
import joblib
import dill
# import pickle
import imblearn
import sklearn
import xgboost
file_name = 'TSPI_model_joblib.sav'
model = joblib.load(file_name)
def STPI(TS4,TS2,TS1,
# Acc_0_5__1_0_MaxValue,
DTS4,DTS2,DTS1):
print('------------------')
X = [TS4,TS2,TS1,
# Acc_0_5__1_0_MaxValue,
DTS4,DTS2,DTS1]
print(X)
outcome_decoded = ['Normal','','Suspect','Keratoconic']
file_object = open('stpi_data.txt', 'a')
file_object.write(str(TS4))
file_object.write(';')
file_object.write(str(TS2))
file_object.write(';')
file_object.write(str(TS1))
file_object.write(';')
# file_object.write(str(Acc_0_5__1_0_MaxValue))
# file_object.write(';')
file_object.write(str(DTS4))
file_object.write(';')
file_object.write(str(DTS2))
file_object.write(';')
file_object.write(str(DTS1))
file_object.write(';')
file_object.write('\n')
file_object.close()
result_3way = model.predict([X])
# print('The patient is ', outcome_decoded[int(result_3way)], 'through the 3way method')
# result = 'The 3-way classification resulted in a ', outcome_decoded[int(result_3way)] + ' patient.'
# further_analysis = 'Futher analysis using the 2-way classification resulted in a ' + outcome_decoded[int(result_2way)] + ' label.'
return 'The patient is ' + outcome_decoded[int(result_3way)] + '.'
iface = gr.Interface(
fn=STPI,
title='TSPI Calculator',
description='The Thickness Speed Progression Index (TSPI) detects keratoconus and keratoconus susceptible corneas through summarized pachymetric parameters. Beta version made for Zeimer by Prof. Shady Awwad, Jad Assaf, MD, and Bassel Hammoud, MD. This is the 3-way classification.',
inputs=["number", "number","number",
# "number",
"number", "number","number"],
outputs="text")
iface.launch(
# share=True
)
# %%
|