Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import logging | |
import json | |
import os | |
# Initialize the InferenceClient with the model ID from Hugging Face | |
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta") | |
# Set up logging | |
logging.basicConfig( | |
filename='chatbot_log.log', | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s', | |
) | |
API_KEYS_FILE = 'api_keys.json' | |
def load_api_keys(): | |
"""Load API keys from the storage.""" | |
if os.path.exists(API_KEYS_FILE): | |
with open(API_KEYS_FILE, 'r') as f: | |
return json.load(f) | |
return {} | |
def authenticate(api_key: str): | |
"""Authenticates the API key by checking against stored keys.""" | |
api_keys = load_api_keys() | |
return api_key in api_keys.values() | |
def log_conversation(user_message, bot_response): | |
"""Logs the conversation between the user and the AI.""" | |
logging.info(f"User: {user_message}") | |
logging.info(f"Bot: {bot_response}") | |
def respond( | |
api_key: str, | |
message: str, | |
history: list[tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
stop_sequence: str, | |
stream_response: bool, | |
): | |
"""Generates a response from the AI model based on the user's message and chat history.""" | |
# Authenticate the API key | |
if not authenticate(api_key): | |
yield "Invalid API key. Access denied." | |
return | |
# Prepare the conversation history for the API call | |
messages = [{"role": "system", "content": system_message}] | |
for user_input, assistant_response in history: | |
if user_input: | |
messages.append({"role": "user", "content": user_input}) | |
if assistant_response: | |
messages.append({"role": "assistant", "content": assistant_response}) | |
# Add the latest user message to the conversation | |
messages.append({"role": "user", "content": message}) | |
# Initialize an empty response | |
response = "" | |
try: | |
if stream_response: | |
# Generate a response from the model with streaming | |
for message in client.chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
stop=stop_sequence, | |
): | |
token = message.choices[0].delta.get("content", "") | |
response += token | |
yield response | |
else: | |
# Generate a complete response without streaming | |
result = client.chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
stream=False, | |
temperature=temperature, | |
top_p=top_p, | |
stop=stop_sequence, | |
) | |
response = result.choices[0].message.get("content", "") | |
log_conversation(message, response) | |
yield response | |
except Exception as e: | |
error_message = f"An error occurred: {str(e)})" | |
logging.error(error_message) | |
yield error_message | |
# Define the ChatInterface with additional input components for user customization | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="", label="API Key", lines=1, type="password"), | |
gr.Textbox(value="You are a friendly Chatbot.", label="System Message", lines=2), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"), | |
gr.Textbox(value="", label="Stop Sequence (optional)", lines=1), | |
gr.Checkbox(label="Stream Response", value=True), | |
], | |
title="AI Chatbot Interface", | |
description="Interact with an AI chatbot powered by Hugging Face's Zephyr-7B model. Customize the chatbot's behavior and response generation settings.", | |
theme="default", | |
allow_flagging="never", | |
) | |
# Launch the Gradio interface | |
if __name__ == "__main__": | |
logging.info("Launching the Gradio interface...") | |
demo.launch() | |
logging.info("Gradio interface launched successfully.") | |