Spaces:
Runtime error
Runtime error
File size: 4,288 Bytes
c67e035 6c40506 f9e8b5c c67e035 ba6c3d0 c67e035 6c40506 f9e8b5c 6c40506 f9e8b5c 6c40506 c67e035 f9e8b5c ba6c3d0 c67e035 ba6c3d0 6c40506 c67e035 f9e8b5c c67e035 f9e8b5c ba6c3d0 c67e035 ba6c3d0 c67e035 ba6c3d0 c67e035 ba6c3d0 6c40506 ba6c3d0 f9e8b5c 6c40506 ba6c3d0 c67e035 ba6c3d0 c67e035 f9e8b5c 2178804 6c40506 c67e035 2178804 6c40506 c67e035 ba6c3d0 c67e035 6c40506 ba6c3d0 6c40506 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import gradio as gr
from huggingface_hub import InferenceClient
import logging
import json
import os
# Initialize the InferenceClient with the model ID from Hugging Face
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta")
# Set up logging
logging.basicConfig(
filename='chatbot_log.log',
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
)
API_KEYS_FILE = 'api_keys.json'
def load_api_keys():
"""Load API keys from the storage."""
if os.path.exists(API_KEYS_FILE):
with open(API_KEYS_FILE, 'r') as f:
return json.load(f)
return {}
def authenticate(api_key: str):
"""Authenticates the API key by checking against stored keys."""
api_keys = load_api_keys()
return api_key in api_keys.values()
def log_conversation(user_message, bot_response):
"""Logs the conversation between the user and the AI."""
logging.info(f"User: {user_message}")
logging.info(f"Bot: {bot_response}")
def respond(
api_key: str,
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
stop_sequence: str,
stream_response: bool,
):
"""Generates a response from the AI model based on the user's message and chat history."""
# Authenticate the API key
if not authenticate(api_key):
yield "Invalid API key. Access denied."
return
# Prepare the conversation history for the API call
messages = [{"role": "system", "content": system_message}]
for user_input, assistant_response in history:
if user_input:
messages.append({"role": "user", "content": user_input})
if assistant_response:
messages.append({"role": "assistant", "content": assistant_response})
# Add the latest user message to the conversation
messages.append({"role": "user", "content": message})
# Initialize an empty response
response = ""
try:
if stream_response:
# Generate a response from the model with streaming
for message in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
stop=stop_sequence,
):
token = message.choices[0].delta.get("content", "")
response += token
yield response
else:
# Generate a complete response without streaming
result = client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=False,
temperature=temperature,
top_p=top_p,
stop=stop_sequence,
)
response = result.choices[0].message.get("content", "")
log_conversation(message, response)
yield response
except Exception as e:
error_message = f"An error occurred: {str(e)})"
logging.error(error_message)
yield error_message
# Define the ChatInterface with additional input components for user customization
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="", label="API Key", lines=1, type="password"),
gr.Textbox(value="You are a friendly Chatbot.", label="System Message", lines=2),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
gr.Textbox(value="", label="Stop Sequence (optional)", lines=1),
gr.Checkbox(label="Stream Response", value=True),
],
title="AI Chatbot Interface",
description="Interact with an AI chatbot powered by Hugging Face's Zephyr-7B model. Customize the chatbot's behavior and response generation settings.",
theme="default",
allow_flagging="never",
)
# Launch the Gradio interface
if __name__ == "__main__":
logging.info("Launching the Gradio interface...")
demo.launch()
logging.info("Gradio interface launched successfully.")
|