Spaces:
Runtime error
Runtime error
Threatthriver
commited on
Commit
•
6c40506
1
Parent(s):
2178804
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,29 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
3 |
|
4 |
# Initialize the InferenceClient with the model ID from Hugging Face
|
5 |
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta")
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def respond(
|
8 |
message: str,
|
9 |
history: list[tuple[str, str]],
|
@@ -11,6 +31,8 @@ def respond(
|
|
11 |
max_tokens: int,
|
12 |
temperature: float,
|
13 |
top_p: float,
|
|
|
|
|
14 |
):
|
15 |
"""
|
16 |
Generates a response from the AI model based on the user's message and chat history.
|
@@ -22,6 +44,8 @@ def respond(
|
|
22 |
max_tokens (int): The maximum number of tokens for the output.
|
23 |
temperature (float): Sampling temperature for controlling the randomness.
|
24 |
top_p (float): Top-p (nucleus sampling) for controlling diversity.
|
|
|
|
|
25 |
|
26 |
Yields:
|
27 |
str: The AI's response as it is generated.
|
@@ -43,20 +67,37 @@ def respond(
|
|
43 |
response = ""
|
44 |
|
45 |
try:
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
yield response
|
57 |
|
58 |
except Exception as e:
|
59 |
-
|
|
|
|
|
60 |
|
61 |
# Define the ChatInterface with additional input components for user customization
|
62 |
demo = gr.ChatInterface(
|
@@ -66,11 +107,17 @@ demo = gr.ChatInterface(
|
|
66 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
|
67 |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
68 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
|
|
|
|
|
69 |
],
|
70 |
title="AI Chatbot Interface",
|
71 |
description="Interact with an AI chatbot powered by Hugging Face's Zephyr-7B model. Customize the chatbot's behavior and response generation settings.",
|
|
|
|
|
72 |
)
|
73 |
|
74 |
# Launch the Gradio interface
|
75 |
if __name__ == "__main__":
|
|
|
76 |
demo.launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import logging
|
4 |
+
from datetime import datetime
|
5 |
|
6 |
# Initialize the InferenceClient with the model ID from Hugging Face
|
7 |
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
+
# Set up logging
|
10 |
+
logging.basicConfig(
|
11 |
+
filename='chatbot_log.log',
|
12 |
+
level=logging.INFO,
|
13 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
14 |
+
)
|
15 |
+
|
16 |
+
def log_conversation(user_message, bot_response):
|
17 |
+
"""
|
18 |
+
Logs the conversation between the user and the AI.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
user_message (str): The user's input message.
|
22 |
+
bot_response (str): The AI's response.
|
23 |
+
"""
|
24 |
+
logging.info(f"User: {user_message}")
|
25 |
+
logging.info(f"Bot: {bot_response}")
|
26 |
+
|
27 |
def respond(
|
28 |
message: str,
|
29 |
history: list[tuple[str, str]],
|
|
|
31 |
max_tokens: int,
|
32 |
temperature: float,
|
33 |
top_p: float,
|
34 |
+
stop_sequence: str,
|
35 |
+
stream_response: bool,
|
36 |
):
|
37 |
"""
|
38 |
Generates a response from the AI model based on the user's message and chat history.
|
|
|
44 |
max_tokens (int): The maximum number of tokens for the output.
|
45 |
temperature (float): Sampling temperature for controlling the randomness.
|
46 |
top_p (float): Top-p (nucleus sampling) for controlling diversity.
|
47 |
+
stop_sequence (str): A custom stop sequence to end the response generation.
|
48 |
+
stream_response (bool): Whether to stream the response or return it as a whole.
|
49 |
|
50 |
Yields:
|
51 |
str: The AI's response as it is generated.
|
|
|
67 |
response = ""
|
68 |
|
69 |
try:
|
70 |
+
if stream_response:
|
71 |
+
# Generate a response from the model with streaming
|
72 |
+
for message in client.chat_completion(
|
73 |
+
messages=messages,
|
74 |
+
max_tokens=max_tokens,
|
75 |
+
stream=True,
|
76 |
+
temperature=temperature,
|
77 |
+
top_p=top_p,
|
78 |
+
stop=stop_sequence,
|
79 |
+
):
|
80 |
+
token = message.choices[0].delta.get("content", "")
|
81 |
+
response += token
|
82 |
+
yield response
|
83 |
+
else:
|
84 |
+
# Generate a complete response without streaming
|
85 |
+
result = client.chat_completion(
|
86 |
+
messages=messages,
|
87 |
+
max_tokens=max_tokens,
|
88 |
+
stream=False,
|
89 |
+
temperature=temperature,
|
90 |
+
top_p=top_p,
|
91 |
+
stop=stop_sequence,
|
92 |
+
)
|
93 |
+
response = result.choices[0].message.get("content", "")
|
94 |
+
log_conversation(message, response)
|
95 |
yield response
|
96 |
|
97 |
except Exception as e:
|
98 |
+
error_message = f"An error occurred: {str(e)}"
|
99 |
+
logging.error(error_message)
|
100 |
+
yield error_message
|
101 |
|
102 |
# Define the ChatInterface with additional input components for user customization
|
103 |
demo = gr.ChatInterface(
|
|
|
107 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
|
108 |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
109 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
|
110 |
+
gr.Textbox(value="", label="Stop Sequence (optional)", lines=1),
|
111 |
+
gr.Checkbox(label="Stream Response", value=True),
|
112 |
],
|
113 |
title="AI Chatbot Interface",
|
114 |
description="Interact with an AI chatbot powered by Hugging Face's Zephyr-7B model. Customize the chatbot's behavior and response generation settings.",
|
115 |
+
theme="default",
|
116 |
+
allow_flagging="never",
|
117 |
)
|
118 |
|
119 |
# Launch the Gradio interface
|
120 |
if __name__ == "__main__":
|
121 |
+
logging.info("Launching the Gradio interface...")
|
122 |
demo.launch()
|
123 |
+
logging.info("Gradio interface launched successfully.")
|