Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Define available models and their Hugging Face IDs | |
available_models = { | |
"Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta", | |
"Llama 2 70B Chat": "meta-llama/Llama-2-70b-chat", | |
# Add more models here as needed | |
} | |
def respond( | |
message: str, | |
history: list[tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
model_name: str, | |
): | |
""" | |
Generates a response from the AI model based on the user's message and chat history. | |
Args: | |
message (str): The user's input message. | |
history (list): A list of tuples representing the conversation history (user, assistant). | |
system_message (str): A system-level message guiding the AI's behavior. | |
max_tokens (int): The maximum number of tokens for the output. | |
temperature (float): Sampling temperature for controlling the randomness. | |
top_p (float): Top-p (nucleus sampling) for controlling diversity. | |
model_name (str): The name of the model to use. | |
Yields: | |
str: The AI's response as it is generated. | |
""" | |
# Initialize the InferenceClient with the selected model | |
client = InferenceClient(model=available_models[model_name]) | |
# Prepare the conversation history for the API call | |
messages = [{"role": "system", "content": system_message}] | |
for user_input, assistant_response in history: | |
messages.append({"role": "user", "content": user_input}) | |
messages.append({"role": "assistant", "content": assistant_response}) | |
# Add the latest user message to the conversation | |
messages.append({"role": "user", "content": message}) | |
# Initialize an empty response | |
streamed_response = "" | |
try: | |
# Generate a response from the model with streaming | |
for response in client.chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
chunk = response.choices[0].delta.get("content", "") | |
streamed_response += chunk | |
yield streamed_response | |
except Exception as e: | |
yield f"**Error:** {str(e)}" | |
def show_updates_and_respond(history, system_message, max_tokens, temperature, top_p, model_name): | |
""" | |
Shows the latest updates and then generates a response from the model based on the updates. | |
""" | |
history.append(("User: ", "Show me the latest updates")) | |
yield from respond( | |
message="Show me the latest updates", | |
history=history, | |
system_message=system_message, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
model_name=model_name, | |
) | |
history[-1] = ("User: ", "Show me the latest updates") | |
history.append(("Assistant:", latest_updates)) | |
yield from respond( | |
message="What are the latest updates?", | |
history=history, | |
system_message=system_message, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
model_name=model_name, | |
) | |
# Latest updates (you can replace this with actual update information) | |
latest_updates = """ | |
**Chatbot - Latest Updates:** | |
* **Multiple Model Support:** You can now choose from different models like Zephyr 7B and Llama 2. | |
* **Improved Error Handling:** The chatbot now provides clearer error messages if something goes wrong. | |
* **Enhanced System Message Input:** You can now provide multi-line system messages to guide the AI's behavior. | |
* **Optimized Temperature Range:** The temperature slider's range has been adjusted for better control over randomness. | |
* **Robust Chunk Handling:** The chatbot now handles streamed responses more reliably, even if some chunks are missing content. | |
""" | |
# Define the Gradio interface with the Blocks context | |
with gr.Blocks(css=".gradio-container {border: none;}") as demo: | |
chat_history = gr.State([]) # Initialize an empty chat history state | |
chat_interface = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a friendly and helpful assistant.", | |
label="System message", | |
lines=2 | |
), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
gr.Dropdown( | |
choices=list(available_models.keys()), | |
value="Zephyr 7B Beta", | |
label="Select Model", | |
), | |
], | |
title="Multi-Model Chatbot", | |
description="A customizable chatbot interface using Hugging Face's Inference API.", | |
chat_history=chat_history, # Pass the state to the ChatInterface | |
) | |
# Add the "Show Updates" button and output area | |
with gr.Row(): | |
updates_button = gr.Button("Show Latest Updates") | |
# Define the button's click event (now inside the Blocks context) | |
updates_button.click( | |
fn=show_updates_and_respond, | |
inputs=[chat_history, chat_interface.textbox, gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), chat_interface.dropdown], | |
outputs=chat_history | |
) | |
# Launch the Gradio interface in full screen | |
if __name__ == "__main__": | |
demo.launch(share=True, fullscreen=True) |