chat-llm / app.py
Threatthriver's picture
Update app.py
66980c9 verified
raw
history blame
5.83 kB
import gradio as gr
from huggingface_hub import InferenceClient
# Define available models and their Hugging Face IDs
available_models = {
"Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta",
"Llama 2 70B Chat": "meta-llama/Llama-2-70b-chat",
# Add more models here as needed
}
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
model_name: str,
):
"""
Generates a response from the AI model based on the user's message and chat history.
Args:
message (str): The user's input message.
history (list): A list of tuples representing the conversation history (user, assistant).
system_message (str): A system-level message guiding the AI's behavior.
max_tokens (int): The maximum number of tokens for the output.
temperature (float): Sampling temperature for controlling the randomness.
top_p (float): Top-p (nucleus sampling) for controlling diversity.
model_name (str): The name of the model to use.
Yields:
str: The AI's response as it is generated.
"""
# Initialize the InferenceClient with the selected model
client = InferenceClient(model=available_models[model_name])
# Prepare the conversation history for the API call
messages = [{"role": "system", "content": system_message}]
for user_input, assistant_response in history:
messages.append({"role": "user", "content": user_input})
messages.append({"role": "assistant", "content": assistant_response})
# Add the latest user message to the conversation
messages.append({"role": "user", "content": message})
# Initialize an empty response
streamed_response = ""
try:
# Generate a response from the model with streaming
for response in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
chunk = response.choices[0].delta.get("content", "")
streamed_response += chunk
yield streamed_response
except Exception as e:
yield f"**Error:** {str(e)}"
def show_updates_and_respond(history, system_message, max_tokens, temperature, top_p, model_name):
"""
Shows the latest updates and then generates a response from the model based on the updates.
"""
history.append(("User: ", "Show me the latest updates"))
yield from respond(
message="Show me the latest updates",
history=history,
system_message=system_message,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
model_name=model_name,
)
history[-1] = ("User: ", "Show me the latest updates")
history.append(("Assistant:", latest_updates))
yield from respond(
message="What are the latest updates?",
history=history,
system_message=system_message,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
model_name=model_name,
)
# Latest updates (you can replace this with actual update information)
latest_updates = """
**Chatbot - Latest Updates:**
* **Multiple Model Support:** You can now choose from different models like Zephyr 7B and Llama 2.
* **Improved Error Handling:** The chatbot now provides clearer error messages if something goes wrong.
* **Enhanced System Message Input:** You can now provide multi-line system messages to guide the AI's behavior.
* **Optimized Temperature Range:** The temperature slider's range has been adjusted for better control over randomness.
* **Robust Chunk Handling:** The chatbot now handles streamed responses more reliably, even if some chunks are missing content.
"""
# Define the Gradio interface with the Blocks context
with gr.Blocks(css=".gradio-container {border: none;}") as demo:
chat_history = gr.State([]) # Initialize an empty chat history state
chat_interface = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(
value="You are a friendly and helpful assistant.",
label="System message",
lines=2
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Dropdown(
choices=list(available_models.keys()),
value="Zephyr 7B Beta",
label="Select Model",
),
],
title="Multi-Model Chatbot",
description="A customizable chatbot interface using Hugging Face's Inference API.",
chat_history=chat_history, # Pass the state to the ChatInterface
)
# Add the "Show Updates" button and output area
with gr.Row():
updates_button = gr.Button("Show Latest Updates")
# Define the button's click event (now inside the Blocks context)
updates_button.click(
fn=show_updates_and_respond,
inputs=[chat_history, chat_interface.textbox, gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), chat_interface.dropdown],
outputs=chat_history
)
# Launch the Gradio interface in full screen
if __name__ == "__main__":
demo.launch(share=True, fullscreen=True)