import gradio as gr from huggingface_hub import InferenceClient # Define available models and their Hugging Face IDs available_models = { "Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta", "Llama 2 70B Chat": "meta-llama/Llama-2-70b-chat", # Add more models here as needed } def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, model_name: str, ): """ Generates a response from the AI model based on the user's message and chat history. Args: message (str): The user's input message. history (list): A list of tuples representing the conversation history (user, assistant). system_message (str): A system-level message guiding the AI's behavior. max_tokens (int): The maximum number of tokens for the output. temperature (float): Sampling temperature for controlling the randomness. top_p (float): Top-p (nucleus sampling) for controlling diversity. model_name (str): The name of the model to use. Yields: str: The AI's response as it is generated. """ # Initialize the InferenceClient with the selected model client = InferenceClient(model=available_models[model_name]) # Prepare the conversation history for the API call messages = [{"role": "system", "content": system_message}] for user_input, assistant_response in history: messages.append({"role": "user", "content": user_input}) messages.append({"role": "assistant", "content": assistant_response}) # Add the latest user message to the conversation messages.append({"role": "user", "content": message}) # Initialize an empty response streamed_response = "" try: # Generate a response from the model with streaming for response in client.chat_completion( messages=messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): chunk = response.choices[0].delta.get("content", "") streamed_response += chunk yield streamed_response except Exception as e: yield f"**Error:** {str(e)}" def show_updates_and_respond(history, system_message, max_tokens, temperature, top_p, model_name): """ Shows the latest updates and then generates a response from the model based on the updates. """ history.append(("User: ", "Show me the latest updates")) yield from respond( message="Show me the latest updates", history=history, system_message=system_message, max_tokens=max_tokens, temperature=temperature, top_p=top_p, model_name=model_name, ) history[-1] = ("User: ", "Show me the latest updates") history.append(("Assistant:", latest_updates)) yield from respond( message="What are the latest updates?", history=history, system_message=system_message, max_tokens=max_tokens, temperature=temperature, top_p=top_p, model_name=model_name, ) # Latest updates (you can replace this with actual update information) latest_updates = """ **Chatbot - Latest Updates:** * **Multiple Model Support:** You can now choose from different models like Zephyr 7B and Llama 2. * **Improved Error Handling:** The chatbot now provides clearer error messages if something goes wrong. * **Enhanced System Message Input:** You can now provide multi-line system messages to guide the AI's behavior. * **Optimized Temperature Range:** The temperature slider's range has been adjusted for better control over randomness. * **Robust Chunk Handling:** The chatbot now handles streamed responses more reliably, even if some chunks are missing content. """ # Define the Gradio interface with the Blocks context with gr.Blocks(css=".gradio-container {border: none;}") as demo: chat_history = gr.State([]) # Initialize an empty chat history state chat_interface = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox( value="You are a friendly and helpful assistant.", label="System message", lines=2 ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), gr.Dropdown( choices=list(available_models.keys()), value="Zephyr 7B Beta", label="Select Model", ), ], title="Multi-Model Chatbot", description="A customizable chatbot interface using Hugging Face's Inference API.", chat_history=chat_history, # Pass the state to the ChatInterface ) # Add the "Show Updates" button and output area with gr.Row(): updates_button = gr.Button("Show Latest Updates") # Define the button's click event (now inside the Blocks context) updates_button.click( fn=show_updates_and_respond, inputs=[chat_history, chat_interface.textbox, gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), chat_interface.dropdown], outputs=chat_history ) # Launch the Gradio interface in full screen if __name__ == "__main__": demo.launch(share=True, fullscreen=True)