Spaces:
Runtime error
Runtime error
File size: 3,615 Bytes
c67e035 6c40506 c67e035 ba6c3d0 c67e035 6c40506 f9e8b5c 6c40506 c67e035 ba6c3d0 c67e035 ba6c3d0 6c40506 c67e035 f9e8b5c c67e035 ba6c3d0 c67e035 ba6c3d0 c67e035 ba6c3d0 c67e035 ba6c3d0 6c40506 ba6c3d0 6134731 6c40506 ba6c3d0 c67e035 ba6c3d0 c67e035 2178804 6c40506 c67e035 2178804 6c40506 c67e035 ba6c3d0 c67e035 6c40506 ba6c3d0 6c40506 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import gradio as gr
from huggingface_hub import InferenceClient
import logging
# Initialize the InferenceClient with the model ID from Hugging Face
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta")
# Set up logging
logging.basicConfig(
filename='chatbot_log.log',
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
)
def log_conversation(user_message, bot_response):
"""Logs the conversation between the user and the AI."""
logging.info(f"User: {user_message}")
logging.info(f"Bot: {bot_response}")
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
stop_sequence: str,
stream_response: bool,
):
"""Generates a response from the AI model based on the user's message and chat history."""
# Prepare the conversation history for the API call
messages = [{"role": "system", "content": system_message}]
for user_input, assistant_response in history:
if user_input:
messages.append({"role": "user", "content": user_input})
if assistant_response:
messages.append({"role": "assistant", "content": assistant_response})
# Add the latest user message to the conversation
messages.append({"role": "user", "content": message})
# Initialize an empty response
response = ""
try:
if stream_response:
# Generate a response from the model with streaming
for message in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
stop=stop_sequence,
):
token = message.choices[0].delta.get("content", "")
response += token
yield response
else:
# Generate a complete response without streaming
result = client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=False,
temperature=temperature,
top_p=top_p,
stop=stop_sequence,
)
response = result.choices[0].message.get("content", "")
log_conversation(message, response)
yield response
except Exception as e:
error_message = f"An error occurred: {str(e})"
logging.error(error_message)
yield error_message
# Define the ChatInterface with additional input components for user customization
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System Message", lines=2),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
gr.Textbox(value="", label="Stop Sequence (optional)", lines=1),
gr.Checkbox(label="Stream Response", value=True),
],
title="AI Chatbot Interface",
description="Interact with an AI chatbot powered by Hugging Face's Zephyr-7B model. Customize the chatbot's behavior and response generation settings.",
theme="default",
)
# Launch the Gradio interface
if __name__ == "__main__":
logging.info("Launching the Gradio interface...")
demo.launch()
logging.info("Gradio interface launched successfully.")
|