File size: 3,289 Bytes
c4e2d13 5d8502c c4e2d13 5d8502c c4e2d13 5d8502c c4e2d13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import cv2
from PIL import Image, ImageEnhance
import gradio as gr
from sklearn.cluster import KMeans
import numpy as np
with gr.Blocks() as interface:
with gr.Row():
n_colors = gr.Slider(2, 32, 12, step=1, label="图片要加工的目标颜色数量")
with gr.Row():
img_input = gr.Image()
img_output = gr.Image()
section_btn1 = gr.Button("合并色彩")
# 图片模型训练
def img_fit_predict(img,n_colors):
data = img.reshape(-1,3)
# 把原始图片压缩成n_colors个颜色
kmeans = KMeans(n_clusters=n_colors)
y_ = kmeans.fit_predict(data)
# 模型合并颜色
colors = kmeans.cluster_centers_/255
output_temp = colors[y_].reshape(img.shape)
return output_temp
section_btn1.click(img_fit_predict, inputs=[img_input,n_colors], outputs=img_output)
with gr.Row():
gaussian_blur = gr.Slider(1, 13, 13, step=2, label="整体降噪参数调整")
structuring_element = gr.Slider(1, 13, 3, step=2, label="去除小噪声")
canny_start = gr.Slider(1, 200, 4, step=1, label="边缘检测-开始参数")
canny_end = gr.Slider(1, 200, 10, step=1, label="边缘检测-结束参数")
with gr.Row():
thresh_val = gr.Slider(50, 500, 205, step=1, label="二值图像-thresh")
maxval = gr.Slider(50, 500, 330, step=1, label="二值图像-maxval")
enhance = gr.Slider(0, 1, 0.8, step=0.1, label="增强颜色-enhance")
blend = gr.Slider(0, 1, 0.4, step=0.1, label="增强颜色-blend")
section_btn2 = gr.Button("调整图片")
with gr.Row():
closed_output = gr.Image()
img_param_output = gr.Image()
# 调整模型结果参数
def turn_arguments(img,img_output,gaussian_blur,structuring_element,canny_start,canny_end,thresh_val,maxval,enhance,blend):
gray = cv2.cvtColor(img_output, cv2.COLOR_BGR2GRAY)
# 对灰度图像进行高斯滤波,以去除噪声
gray = cv2.GaussianBlur(gray, (gaussian_blur,gaussian_blur), 0)
# 使用Canny算子进行边缘检测
edges = cv2.Canny(gray, canny_start, canny_end)
# 将边缘图像转换为二值图像
_, thresh = cv2.threshold(edges, thresh_val, maxval, cv2.THRESH_BINARY)
# 对二值图像进行形态学操作,以去除小的噪点
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (structuring_element, structuring_element))
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
image = Image.fromarray(img_output)
closed = closed.astype(img.dtype)
# 颜色空间转换
enhancer = ImageEnhance.Color(image=image)
# 增强颜色
img1 = enhancer.enhance(enhance).convert('RGB')
img2 = Image.fromarray(closed).convert('RGB')
union_img = np.asarray(Image.blend(img2, img1, blend))
return closed,union_img
section_btn2.click(turn_arguments,inputs=[img_input, img_output,gaussian_blur,
structuring_element,canny_start,canny_end,thresh_val,maxval,enhance,blend ],
outputs = [closed_output,img_param_output])
interface.launch() |