IdaLee commited on
Commit
c4e2d13
·
1 Parent(s): 33bef7d

Update pictureDeal.py

Browse files
Files changed (1) hide show
  1. pictureDeal.py +71 -4
pictureDeal.py CHANGED
@@ -1,7 +1,74 @@
 
 
1
  import gradio as gr
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ from PIL import Image, ImageEnhance
3
  import gradio as gr
4
+ from sklearn.cluster import KMeans
5
+ import numpy as np
6
 
7
+ with gr.Blocks() as interface:
 
8
 
9
+ with gr.Row():
10
+ n_colors = gr.Slider(2, 32, 12, step=1, label="图片要加工的目标颜色数量")
11
+
12
+ with gr.Row():
13
+ img_input = gr.Image()
14
+ img_output = gr.Image()
15
+
16
+ section_btn1 = gr.Button("合并色彩")
17
+
18
+ # 图片模型训练
19
+ def img_fit_predict(img,n_colors):
20
+ data = img.reshape(-1,3)
21
+ # 把原始图片压缩成n_colors个颜色
22
+ kmeans = KMeans(n_clusters=n_colors)
23
+ y_ = kmeans.fit_predict(data)
24
+ # 模型合并颜色
25
+ colors = kmeans.cluster_centers_/255
26
+ output_temp = colors[y_].reshape(img.shape)
27
+ return output_temp
28
+
29
+ section_btn1.click(img_fit_predict, inputs=[img_input,n_colors], outputs=img_output)
30
+
31
+ with gr.Row():
32
+ gaussian_blur = gr.Slider(1, 13, 13, step=2, label="整体降噪参数调整")
33
+ structuring_element = gr.Slider(1, 13, 3, step=2, label="去除小噪声")
34
+ canny_start = gr.Slider(1, 200, 4, step=1, label="边缘检测-开始参数")
35
+ canny_end = gr.Slider(1, 200, 10, step=1, label="边缘检测-结束参数")
36
+
37
+ with gr.Row():
38
+ thresh_val = gr.Slider(50, 500, 205, step=1, label="二值图像-thresh")
39
+ maxval = gr.Slider(50, 500, 330, step=1, label="二值图像-maxval")
40
+ enhance = gr.Slider(0, 1, 0.8, step=0.1, label="增强颜色-enhance")
41
+ blend = gr.Slider(0, 1, 0.4, step=0.1, label="增强颜色-blend")
42
+
43
+ section_btn2 = gr.Button("调整图片")
44
+ with gr.Row():
45
+ closed_output = gr.Image()
46
+ img_param_output = gr.Image()
47
+
48
+ # 调整模型结果参数
49
+ def turn_arguments(img,img_output,gaussian_blur,structuring_element,canny_start,canny_end,thresh_val,maxval,enhance,blend):
50
+ gray = cv2.cvtColor(img_output, cv2.COLOR_BGR2GRAY)
51
+ # 对灰度图像进行高斯滤波,以去除噪声
52
+ gray = cv2.GaussianBlur(gray, (gaussian_blur,gaussian_blur), 0)
53
+ # 使用Canny算子进行边缘检测
54
+ edges = cv2.Canny(gray, canny_start, canny_end)
55
+ # 将边缘图像转换为二值图像
56
+ _, thresh = cv2.threshold(edges, thresh_val, maxval, cv2.THRESH_BINARY)
57
+ # 对二值图像进行形态学操作,以去除小的噪点
58
+ kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (structuring_element, structuring_element))
59
+ closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
60
+ image = Image.fromarray(img_output)
61
+ closed = closed.astype(img.dtype)
62
+ # 颜色空间转换
63
+ enhancer = ImageEnhance.Color(image=image)
64
+ # 增强颜色
65
+ img1 = enhancer.enhance(enhance).convert('RGB')
66
+ img2 = Image.fromarray(closed).convert('RGB')
67
+ union_img = np.asarray(Image.blend(img2, img1, blend))
68
+ return closed,union_img
69
+
70
+ section_btn2.click(turn_arguments,inputs=[img_input, img_output,gaussian_blur,
71
+ structuring_element,canny_start,canny_end,thresh_val,maxval,enhance,blend ],
72
+ outputs = [closed_output,img_param_output])
73
+
74
+ interface.launch()