SmolVLM2-HighlightGenerator / modeling_smolvlm.py
mfarre's picture
mfarre HF staff
initial test
880de81
raw
history blame
13.9 kB
import torch
from torch import nn
from transformers import Idefics3Model, Idefics3ForConditionalGeneration
from typing import Dict, Any, List, Optional, Union, Tuple
from transformers.cache_utils import Cache, DynamicCache
from transformers.utils import add_start_docstrings_to_model_forward, logging
from transformers.models.idefics3.modeling_idefics3 import IDEFICS3_INPUTS_DOCSTRING, Idefics3BaseModelOutputWithPast
logger = logging.get_logger(__name__)
class SmolVLMModel(Idefics3Model):
"""
A subclass of Idefics3Model. We do *not* remove or block the call to inputs_merger
in forward. Instead, we override inputs_merger here with custom logic.
"""
def inputs_merger(
self,
input_ids: torch.LongTensor,
inputs_embeds: torch.Tensor,
image_hidden_states: torch.Tensor
) -> torch.Tensor:
"""
Merge text embeddings with image embeddings out-of-place (no in-place indexing).
The shapes are something like:
- input_ids: (B, T)
- inputs_embeds: (B, T, D)
- image_hidden_states:(N, S, D) where N is total images across the batch,
S is #patches (or #slots) per image, D is embedding dim.
Logic:
1) For each sample in the batch, find <image> tokens in the text.
2) If zero <image> tokens => text-only. Concatenate a zero-length slice
from image_hidden_states but do NOT advance the offset. This ensures
the model's image encoder is still in the computation graph, but we
skip "consuming" any image block for a text-only sample.
3) If there are <image> tokens, they appear in multiples of S for each image
(because each image is S embeddings). We chunk those positions into groups
of S. For each chunk => we consume one block from image_hidden_states[offset]
(which is shape (S, D)), and place each row into the text in place of a token.
Returns:
A tensor of (B, T, D).
"""
##############################################
# 1) Basic shape checks
##############################################
#old_merger_outputs = self.inputs_merger_old(input_ids, inputs_embeds, image_hidden_states)
B, T, D_text = inputs_embeds.shape
N, S, D_img = image_hidden_states.shape
if D_text != D_img:
raise ValueError(
f"Text embedding dim {D_text} != image embedding dim {D_img}"
)
##############################################
# 2) We'll track how many images we've used so far across the entire batch
##############################################
image_offset = 0
# We'll store one merged tensor per batch sample
merged_outputs: List[torch.Tensor] = []
##############################################
# 3) Iterate through each sample
##############################################
for b_idx, (cur_ids, cur_embeds) in enumerate(zip(input_ids, inputs_embeds)):
# Find positions of <image> tokens in the text
image_positions = (cur_ids == self.image_token_id).nonzero(as_tuple=True)[0]
num_image_tokens = len(image_positions)
# If no <image> => text-only
if num_image_tokens == 0:
# We do not consume any row from image_hidden_states;
# but we do a zero-length slice so the image encoder is in the graph.
empty_slice = image_hidden_states[0][:0, :] # shape (0, D)
# Concatenate text plus that empty slice.
# NOTE: this is important for DeepSpeed.
merged_text_only = torch.cat([cur_embeds, empty_slice], dim=0)
merged_outputs.append(merged_text_only)
continue
# Otherwise, we have at least one <image> token.
# Typically, if each image is S embeddings, we expect the total # of <image> tokens
# in this sample to be multiple of S => each group of S tokens = 1 image
if num_image_tokens % S != 0:
raise ValueError(
f"Sample {b_idx} has {num_image_tokens} <image> tokens, not a multiple of S={S}. "
"Cannot map them to blocks of shape (S, D)."
)
# We'll chunk image_positions into groups of size S
positions_list = image_positions.tolist()
# Example: if num_image_tokens=162 and S=81 => we have 2 images => 2 chunks each of length 81
chunks = [
positions_list[i : i + S]
for i in range(0, num_image_tokens, S)
]
# We'll build a list of segments: text, then image row(s), text, etc.
segments = []
text_start = 0
# For each chunk (each chunk => 1 image)
for chunk in chunks:
# image_hidden_states[image_offset] => shape (S, D)
cur_block = image_hidden_states[image_offset]
image_offset += 1
# We'll iterate over the S positions in ascending order
for i_s, pos in enumerate(chunk):
# Add text from [text_start..pos)
if pos > text_start:
segments.append(cur_embeds[text_start:pos])
# Then add one row from cur_block => shape (1, D)
row_of_block = cur_block[i_s : i_s + 1, :]
segments.append(row_of_block)
# skip the <image> token
text_start = pos + 1
# leftover text after the final <image> token
if text_start < T:
segments.append(cur_embeds[text_start:])
# cat them into a single (T_b, D) tensor
merged_sample = torch.cat(segments, dim=0)
merged_outputs.append(merged_sample)
merged_outputs = torch.stack(merged_outputs)
#assert (old_merger_outputs==merged_outputs).all()
return merged_outputs
@add_start_docstrings_to_model_forward(
"""
Inputs fed to the model can have an arbitrary number of images. To account for this, pixel_values fed to
the model have image padding -> (batch_size, max_num_images, 3, max_heights, max_widths) where
max_num_images is the maximum number of images among the batch_size samples in the batch.
Padding images are not needed beyond padding the pixel_values at the entrance of the model.
For efficiency, we only pass through the vision_model's forward the real images by
discarding the padding images i.e. pixel_values of size (image_batch_size, 3, height, width) where
image_batch_size would be 7 when num_images_per_sample=[1, 3, 1, 2] and max_num_images would be 3.
""",
IDEFICS3_INPUTS_DOCSTRING,
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
pixel_attention_mask: Optional[torch.BoolTensor] = None,
image_hidden_states: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Idefics3BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.training and self.text_model.gradient_checkpointing and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# retrieve input_ids and inputs_embeds
if input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
past_seen_tokens = 0
if use_cache:
if past_key_values is None:
past_key_values = DynamicCache()
past_seen_tokens = past_key_values.get_seq_length()
if inputs_embeds is not None and input_ids is None and past_seen_tokens == 0:
raise ValueError("When first calling the model, if input_embeds are passed, input_ids should not be None.")
if inputs_embeds is None:
inputs_embeds = self.text_model.get_input_embeddings()(input_ids).to(self.device)
# START VISUAL INPUTS INTEGRATION
if pixel_values is not None and image_hidden_states is not None:
raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time")
elif pixel_values is not None:
batch_size, num_images, num_channels, height, width = pixel_values.shape
pixel_values = pixel_values.to(dtype=self.dtype) # fp16 compatibility
pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:])
# Remove padding images - padding images are full 0.
nb_values_per_image = pixel_values.shape[1:].numel()
real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image
if not any(real_images_inds):
# no images, leave one empty image.
real_images_inds[0] = True
pixel_values = pixel_values[real_images_inds].contiguous()
# Handle the vision attention mask
if pixel_attention_mask is None:
pixel_attention_mask = torch.ones(
size=(pixel_values.size(0), pixel_values.size(2), pixel_values.size(3)),
dtype=torch.bool,
device=pixel_values.device,
)
else:
# Remove padding images from the mask
pixel_attention_mask = pixel_attention_mask.view(
batch_size * num_images, *pixel_attention_mask.shape[2:]
)
pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous()
patch_size = self.config.vision_config.patch_size
patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size)
patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size)
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
# Get sequence from the vision encoder
image_hidden_states = self.vision_model(
pixel_values=pixel_values,
patch_attention_mask=patch_attention_mask,
).last_hidden_state
# Modality projection & resampling
image_hidden_states = self.connector(image_hidden_states)
elif image_hidden_states is not None:
image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device)
if past_seen_tokens == 0 and inputs_embeds is not None and image_hidden_states is not None:
# When we generate, we don't want to replace the potential image_token_id that we generated by images
# that simply don't exist
inputs_embeds = self.inputs_merger(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
image_hidden_states=image_hidden_states,
)
outputs = self.text_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return tuple(v for v in [*outputs, image_hidden_states] if v is not None)
return Idefics3BaseModelOutputWithPast(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_hidden_states,
)
class SmolVLMForConditionalGeneration(Idefics3ForConditionalGeneration):
"""
A subclass of Idefics3ForConditionalGeneration that uses MyIdefics3Model
instead of the default Idefics3Model.
"""
def __init__(self, config):
super().__init__(config)
# Instead of the original self.model = Idefics3Model(config),
# we point to our custom class.
self.model = SmolVLMModel(config)
# We *keep* the same lm_head from the parent, or re-init if you prefer:
self.lm_head = nn.Linear(
config.text_config.hidden_size, config.text_config.vocab_size, bias=False
)
# If parent sets up any post_init() logic:
self.post_init()