File size: 13,903 Bytes
880de81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import torch
from torch import nn
from transformers import Idefics3Model, Idefics3ForConditionalGeneration
from typing import Dict, Any, List, Optional, Union, Tuple
from transformers.cache_utils import Cache, DynamicCache

from transformers.utils import add_start_docstrings_to_model_forward, logging
from transformers.models.idefics3.modeling_idefics3 import IDEFICS3_INPUTS_DOCSTRING, Idefics3BaseModelOutputWithPast

logger = logging.get_logger(__name__)

class SmolVLMModel(Idefics3Model):
    """
    A subclass of Idefics3Model. We do *not* remove or block the call to inputs_merger
    in forward. Instead, we override inputs_merger here with custom logic.
    """
    def inputs_merger(
        self,
        input_ids: torch.LongTensor,
        inputs_embeds: torch.Tensor,
        image_hidden_states: torch.Tensor
    ) -> torch.Tensor:
        """
        Merge text embeddings with image embeddings out-of-place (no in-place indexing).
    
        The shapes are something like:
          - input_ids:          (B, T)
          - inputs_embeds:      (B, T, D)
          - image_hidden_states:(N, S, D) where N is total images across the batch,
            S is #patches (or #slots) per image, D is embedding dim.
    
        Logic:
          1) For each sample in the batch, find <image> tokens in the text.
          2) If zero <image> tokens => text-only. Concatenate a zero-length slice
             from image_hidden_states but do NOT advance the offset. This ensures
             the model's image encoder is still in the computation graph, but we
             skip "consuming" any image block for a text-only sample.
          3) If there are <image> tokens, they appear in multiples of S for each image
             (because each image is S embeddings). We chunk those positions into groups
             of S. For each chunk => we consume one block from image_hidden_states[offset]
             (which is shape (S, D)), and place each row into the text in place of a token.
    
        Returns:
          A tensor of (B, T, D).
        """
    
        ##############################################
        # 1) Basic shape checks
        ##############################################
        #old_merger_outputs = self.inputs_merger_old(input_ids, inputs_embeds, image_hidden_states)
        B, T, D_text = inputs_embeds.shape
        N, S, D_img  = image_hidden_states.shape
        if D_text != D_img:
            raise ValueError(
                f"Text embedding dim {D_text} != image embedding dim {D_img}"
            )
    
        ##############################################
        # 2) We'll track how many images we've used so far across the entire batch
        ##############################################
        image_offset = 0
    
        # We'll store one merged tensor per batch sample
        merged_outputs: List[torch.Tensor] = []
    
        ##############################################
        # 3) Iterate through each sample
        ##############################################
        for b_idx, (cur_ids, cur_embeds) in enumerate(zip(input_ids, inputs_embeds)):
            # Find positions of <image> tokens in the text
            image_positions = (cur_ids == self.image_token_id).nonzero(as_tuple=True)[0]
            num_image_tokens = len(image_positions)
    
            # If no <image> => text-only
            if num_image_tokens == 0:
                # We do not consume any row from image_hidden_states; 
                # but we do a zero-length slice so the image encoder is in the graph.
                empty_slice = image_hidden_states[0][:0, :]  # shape (0, D)
                # Concatenate text plus that empty slice.
                # NOTE: this is important for DeepSpeed.
                merged_text_only = torch.cat([cur_embeds, empty_slice], dim=0)
                merged_outputs.append(merged_text_only)
                continue
    
            # Otherwise, we have at least one <image> token.
            # Typically, if each image is S embeddings, we expect the total # of <image> tokens
            # in this sample to be multiple of S => each group of S tokens = 1 image
            if num_image_tokens % S != 0:
                raise ValueError(
                    f"Sample {b_idx} has {num_image_tokens} <image> tokens, not a multiple of S={S}. "
                    "Cannot map them to blocks of shape (S, D)."
                )
    
            # We'll chunk image_positions into groups of size S
            positions_list = image_positions.tolist()
            # Example: if num_image_tokens=162 and S=81 => we have 2 images => 2 chunks each of length 81
            chunks = [
                positions_list[i : i + S]
                for i in range(0, num_image_tokens, S)
            ]
    
            # We'll build a list of segments: text, then image row(s), text, etc.
            segments = []
            text_start = 0
    
            # For each chunk (each chunk => 1 image)
            for chunk in chunks:
                # image_hidden_states[image_offset] => shape (S, D)
                cur_block = image_hidden_states[image_offset]
                image_offset += 1
    
                # We'll iterate over the S positions in ascending order
                for i_s, pos in enumerate(chunk):
                    # Add text from [text_start..pos)
                    if pos > text_start:
                        segments.append(cur_embeds[text_start:pos])
                    # Then add one row from cur_block => shape (1, D)
                    row_of_block = cur_block[i_s : i_s + 1, :]
                    segments.append(row_of_block)
                    # skip the <image> token
                    text_start = pos + 1
    
            # leftover text after the final <image> token
            if text_start < T:
                segments.append(cur_embeds[text_start:])
    
            # cat them into a single (T_b, D) tensor
            merged_sample = torch.cat(segments, dim=0)
            merged_outputs.append(merged_sample)
            
        merged_outputs = torch.stack(merged_outputs)
        #assert (old_merger_outputs==merged_outputs).all()
        return merged_outputs


    @add_start_docstrings_to_model_forward(
        """
        Inputs fed to the model can have an arbitrary number of images. To account for this, pixel_values fed to
        the model have image padding -> (batch_size, max_num_images, 3, max_heights, max_widths) where
        max_num_images is the maximum number of images among the batch_size samples in the batch.
        Padding images are not needed beyond padding the pixel_values at the entrance of the model.
        For efficiency, we only pass through the vision_model's forward the real images by
        discarding the padding images i.e. pixel_values of size (image_batch_size, 3, height, width) where
        image_batch_size would be 7 when num_images_per_sample=[1, 3, 1, 2] and max_num_images would be 3.
        """,
        IDEFICS3_INPUTS_DOCSTRING,
    )
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        pixel_attention_mask: Optional[torch.BoolTensor] = None,
        image_hidden_states: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, Idefics3BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.training and self.text_model.gradient_checkpointing and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
            )
            use_cache = False

        # retrieve input_ids and inputs_embeds
        if input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        past_seen_tokens = 0
        if use_cache:
            if past_key_values is None:
                past_key_values = DynamicCache()
            past_seen_tokens = past_key_values.get_seq_length()

        if inputs_embeds is not None and input_ids is None and past_seen_tokens == 0:
            raise ValueError("When first calling the model, if input_embeds are passed, input_ids should not be None.")

        if inputs_embeds is None:
            inputs_embeds = self.text_model.get_input_embeddings()(input_ids).to(self.device)

        # START VISUAL INPUTS INTEGRATION
        if pixel_values is not None and image_hidden_states is not None:
            raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time")
        elif pixel_values is not None:
            batch_size, num_images, num_channels, height, width = pixel_values.shape
            pixel_values = pixel_values.to(dtype=self.dtype)  # fp16 compatibility
            pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:])

            # Remove padding images - padding images are full 0.
            nb_values_per_image = pixel_values.shape[1:].numel()
            real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image
            
            if not any(real_images_inds):
                # no images, leave one empty image.
                real_images_inds[0] = True
                
            pixel_values = pixel_values[real_images_inds].contiguous()
            
            # Handle the vision attention mask
            if pixel_attention_mask is None:
                pixel_attention_mask = torch.ones(
                    size=(pixel_values.size(0), pixel_values.size(2), pixel_values.size(3)),
                    dtype=torch.bool,
                    device=pixel_values.device,
                )
            else:
                # Remove padding images from the mask
                pixel_attention_mask = pixel_attention_mask.view(
                    batch_size * num_images, *pixel_attention_mask.shape[2:]
                )
                pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous()

            patch_size = self.config.vision_config.patch_size
            patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size)
            patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size)
            patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()

            # Get sequence from the vision encoder
            image_hidden_states = self.vision_model(
                pixel_values=pixel_values,
                patch_attention_mask=patch_attention_mask,
            ).last_hidden_state
            
            # Modality projection & resampling
            image_hidden_states = self.connector(image_hidden_states)

        elif image_hidden_states is not None:
            image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device)

        if past_seen_tokens == 0 and inputs_embeds is not None and image_hidden_states is not None:
            # When we generate, we don't want to replace the potential image_token_id that we generated by images
            # that simply don't exist
            inputs_embeds = self.inputs_merger(
                input_ids=input_ids,
                inputs_embeds=inputs_embeds,
                image_hidden_states=image_hidden_states,
            )

        outputs = self.text_model(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return tuple(v for v in [*outputs, image_hidden_states] if v is not None)

        return Idefics3BaseModelOutputWithPast(
            last_hidden_state=outputs.last_hidden_state,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_hidden_states=image_hidden_states,
        )




class SmolVLMForConditionalGeneration(Idefics3ForConditionalGeneration):
    """
    A subclass of Idefics3ForConditionalGeneration that uses MyIdefics3Model
    instead of the default Idefics3Model.
    """

    def __init__(self, config):
        super().__init__(config)
        # Instead of the original self.model = Idefics3Model(config),
        # we point to our custom class.
        self.model = SmolVLMModel(config)

        # We *keep* the same lm_head from the parent, or re-init if you prefer:
        self.lm_head = nn.Linear(
            config.text_config.hidden_size, config.text_config.vocab_size, bias=False
        )

        # If parent sets up any post_init() logic:
        self.post_init()