Spaces:
Running
on
A100
Running
on
A100
File size: 8,784 Bytes
880de81 02abdab 880de81 02abdab 880de81 02abdab 4c7362f 1167d4f 0be0bad 4a445e6 880de81 fc0912b 880de81 48a7d81 946878e 880de81 36e4433 880de81 02abdab 6c8ddcc 880de81 6c8ddcc 880de81 84d7c6f 880de81 36e4433 880de81 6c8ddcc 880de81 6c8ddcc 880de81 c7fdc4d f652e04 75813eb 880de81 c43a83e c7fdc4d 946878e c43a83e 946878e 0cb8d8c c7fdc4d 0cb8d8c 946878e 880de81 946878e 0cb8d8c f652e04 880de81 8323202 be5d51f 8323202 0cb8d8c 880de81 946878e c7fdc4d 8323202 c7fdc4d 8323202 0cb8d8c 8323202 c7fdc4d 8323202 0cb8d8c 946878e 277bb56 f652e04 277bb56 946878e 8323202 0cb8d8c 946878e f652e04 4bc123c 8323202 0cb8d8c 946878e f652e04 0cb8d8c fc0912b 946878e fc0912b 946878e fc0912b 946878e 8323202 946878e 8323202 f652e04 880de81 167ab4b 0cb8d8c 880de81 f38285f 0cb8d8c 8323202 880de81 4c7362f 1167d4f 880de81 4c7362f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os
import json
import gradio as gr
import tempfile
from PIL import Image, ImageDraw, ImageFont
import cv2
from typing import Tuple, Optional
import torch
from pathlib import Path
import time
import torch
import spaces
import os
from video_highlight_detector import (
load_model,
BatchedVideoHighlightDetector,
get_video_duration_seconds,
get_fixed_30s_segments
)
def load_examples(json_path: str) -> dict:
with open(json_path, 'r') as f:
return json.load(f)
def format_duration(seconds: int) -> str:
hours = seconds // 3600
minutes = (seconds % 3600) // 60
secs = seconds % 60
if hours > 0:
return f"{hours}:{minutes:02d}:{secs:02d}"
return f"{minutes}:{secs:02d}"
def create_ui(examples_path: str):
examples_data = load_examples(examples_path)
with gr.Blocks() as app:
img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/SmolVLM2-highlight-generator.png"
gr.Image(value=img_url, height=300, show_label=False)
gr.Markdown("Upload a video and get an automated highlight reel!")
with gr.Row():
gr.Markdown("## Example Results")
with gr.Row():
for example in examples_data["examples"]:
with gr.Column():
gr.Video(
value=example["original"]["url"],
label=f"Original ({format_duration(example['original']['duration_seconds'])})",
interactive=False
)
gr.Markdown(f"### {example['title']}")
with gr.Column():
gr.Video(
value=example["highlights"]["url"],
label=f"Highlights ({format_duration(example['highlights']['duration_seconds'])})",
interactive=False
)
with gr.Accordion("Chain of thought details", open=False):
gr.Markdown(f"### Summary:\n{example['analysis']['video_description']}")
gr.Markdown(f"### Highlights to search for:\n{example['analysis']['highlight_types']}")
gr.Markdown("## Try It Yourself!")
with gr.Row():
with gr.Column(scale=1):
input_video = gr.Video(
label="Upload your video (max 30 minutes)",
interactive=True
)
process_btn = gr.Button("Process Video", variant="primary")
with gr.Column(scale=1):
output_video = gr.Video(
label="Highlight Video",
visible=False,
interactive=False,
)
status = gr.Markdown()
analysis_accordion = gr.Accordion(
"Chain of thought details",
open=True,
visible=False
)
with analysis_accordion:
video_description = gr.Markdown("", elem_id="video_desc")
highlight_types = gr.Markdown("", elem_id="highlight_types")
@spaces.GPU
def on_process(video):
# Clear all components when starting new processing
yield [
"", # Clear status
"", # Clear video description
"", # Clear highlight types
gr.update(value=None, visible=False), # Clear video
gr.update(visible=False) # Hide accordion
]
if not video:
yield [
"Please upload a video",
"",
"",
gr.update(visible=False),
gr.update(visible=False)
]
return
try:
duration = get_video_duration_seconds(video)
if duration > 1800: # 30 minutes
yield [
"Video must be shorter than 30 minutes",
"",
"",
gr.update(visible=False),
gr.update(visible=False)
]
return
# Make accordion visible as soon as processing starts
yield [
"Loading model...",
"",
"",
gr.update(visible=False),
gr.update(visible=False)
]
model, processor = load_model()
detector = BatchedVideoHighlightDetector(
model,
processor,
batch_size=8
)
yield [
"Analyzing video content...",
"",
"",
gr.update(visible=False),
gr.update(visible=True)
]
video_desc = detector.analyze_video_content(video)
formatted_desc = f"### Summary:\n {video_desc[:500] + '...' if len(video_desc) > 500 else video_desc}"
yield [
"Determining highlight types...",
formatted_desc,
"",
gr.update(visible=False),
gr.update(visible=True)
]
highlights = detector.determine_highlights(video_desc)
formatted_highlights = f"### Highlights to search for:\n {highlights[:500] + '...' if len(highlights) > 500 else highlights}"
# Get all segments
segments = get_fixed_30s_segments(video)
total_segments = len(segments)
kept_segments = []
# Process segments in batches with direct UI updates
for i in range(0, len(segments), detector.batch_size):
batch_segments = segments[i:i + detector.batch_size]
# Update progress
progress = int((i / total_segments) * 100)
yield [
f"Processing segments... {progress}% complete",
formatted_desc,
formatted_highlights,
gr.update(visible=False),
gr.update(visible=True)
]
# Process batch
keep_flags = detector._process_segment_batch(
video_path=video,
segments=batch_segments,
highlight_types=highlights,
total_segments=total_segments,
segments_processed=i
)
# Keep track of segments to include
for segment, keep in zip(batch_segments, keep_flags):
if keep:
kept_segments.append(segment)
# Create final video
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
temp_output = tmp_file.name
detector._concatenate_scenes(video, kept_segments, temp_output)
yield [
"Processing complete!",
formatted_desc,
formatted_highlights,
gr.update(value=temp_output, visible=True),
gr.update(visible=True)
]
except Exception as e:
yield [
f"Error processing video: {str(e)}",
"",
"",
gr.update(visible=False),
gr.update(visible=False)
]
finally:
if model is not None:
del model
torch.cuda.empty_cache()
process_btn.click(
on_process,
inputs=[input_video],
outputs=[
status,
video_description,
highlight_types,
output_video,
analysis_accordion
],
queue=True,
)
return app
if __name__ == "__main__":
# Initialize CUDA
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
zero = torch.Tensor([0]).to(device)
app = create_ui("video_spec.json")
app.launch() |