Spaces:
Running
on
A100
Running
on
A100
app.py
CHANGED
@@ -32,47 +32,6 @@ def format_duration(seconds: int) -> str:
|
|
32 |
return f"{minutes}:{secs:02d}"
|
33 |
|
34 |
|
35 |
-
# @spaces.GPU
|
36 |
-
# def process_video(
|
37 |
-
# video_path: str,
|
38 |
-
# progress = gr.Progress()
|
39 |
-
# ) -> Tuple[str, str, str, str]:
|
40 |
-
# try:
|
41 |
-
# # duration = get_video_duration_seconds(video_path)
|
42 |
-
# # if duration > 1200: # 20 minutes
|
43 |
-
# # return None, None, None, "Video must be shorter than 20 minutes"
|
44 |
-
|
45 |
-
# progress(0.1, desc="Loading model...")
|
46 |
-
# model, processor = load_model()
|
47 |
-
# detector = BatchedVideoHighlightDetector(model, processor, batch_size=8)
|
48 |
-
|
49 |
-
# progress(0.2, desc="Analyzing video content...")
|
50 |
-
# video_description = detector.analyze_video_content(video_path)
|
51 |
-
|
52 |
-
# progress(0.3, desc="Determining highlight types...")
|
53 |
-
# highlight_types = detector.determine_highlights(video_description)
|
54 |
-
|
55 |
-
# progress(0.4, desc="Detecting and extracting highlights...")
|
56 |
-
# with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
57 |
-
# output_path = tmp_file.name
|
58 |
-
|
59 |
-
# detector.create_highlight_video(video_path, output_path)
|
60 |
-
|
61 |
-
# # progress(0.9, desc="Adding watermark...")
|
62 |
-
# # output_path = temp_output.replace('.mp4', '_watermark.mp4')
|
63 |
-
# # add_watermark(temp_output, output_path)
|
64 |
-
|
65 |
-
# os.unlink(output_path)
|
66 |
-
# progress(1.0, desc="Complete!")
|
67 |
-
|
68 |
-
# video_description = video_description[:500] + "..." if len(video_description) > 500 else video_description
|
69 |
-
# highlight_types = highlight_types[:500] + "..." if len(highlight_types) > 500 else highlight_types
|
70 |
-
|
71 |
-
# return output_path, video_description, highlight_types, None
|
72 |
-
|
73 |
-
# except Exception as e:
|
74 |
-
# return None, None, None, f"Error processing video: {str(e)}"
|
75 |
-
|
76 |
def create_ui(examples_path: str):
|
77 |
examples_data = load_examples(examples_path)
|
78 |
|
@@ -131,137 +90,149 @@ def create_ui(examples_path: str):
|
|
131 |
with analysis_accordion:
|
132 |
video_description = gr.Markdown("", elem_id="video_desc")
|
133 |
highlight_types = gr.Markdown("", elem_id="highlight_types")
|
134 |
-
# # Main interface section
|
135 |
-
# gr.Markdown("## Try It Yourself!")
|
136 |
-
# with gr.Row():
|
137 |
-
# # Left column: Upload and Process
|
138 |
-
# with gr.Column(scale=1):
|
139 |
-
# input_video = gr.Video(
|
140 |
-
# label="Upload your video (max 20 minutes)",
|
141 |
-
# interactive=True
|
142 |
-
# )
|
143 |
-
# process_btn = gr.Button("Process Video", variant="primary")
|
144 |
-
|
145 |
-
# # Right column: Progress and Analysis
|
146 |
-
# with gr.Column(scale=1):
|
147 |
-
|
148 |
-
# # Output video (initially hidden)
|
149 |
-
# output_video = gr.Video(
|
150 |
-
# label="Highlight Video",
|
151 |
-
# visible=False,
|
152 |
-
# interactive=False,
|
153 |
-
# )
|
154 |
-
|
155 |
-
# status = gr.Markdown()
|
156 |
-
|
157 |
-
# with gr.Accordion("Model chain of thought details", open=True, visible=True) as analysis_accordion:
|
158 |
-
# video_description = gr.Markdown("", elem_id="video_desc")
|
159 |
-
# highlight_types = gr.Markdown("", elem_id="highlight_types")
|
160 |
-
|
161 |
|
162 |
@spaces.GPU
|
163 |
-
def
|
164 |
if not video:
|
165 |
-
return
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
|
173 |
try:
|
174 |
duration = get_video_duration_seconds(video)
|
175 |
if duration > 1200: # 20 minutes
|
176 |
-
return
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
#
|
185 |
-
yield {
|
186 |
-
status: "Loading model...",
|
187 |
-
video_description: "",
|
188 |
-
highlight_types: "",
|
189 |
-
output_video: gr.update(visible=False),
|
190 |
-
analysis_accordion: gr.update(visible=True)
|
191 |
-
}
|
192 |
-
|
193 |
model, processor = load_model()
|
194 |
detector = BatchedVideoHighlightDetector(model, processor, batch_size=8)
|
195 |
|
196 |
-
|
197 |
-
status: "Analyzing video content...",
|
198 |
-
video_description: "",
|
199 |
-
highlight_types: "",
|
200 |
-
output_video: gr.update(visible=False),
|
201 |
-
analysis_accordion: gr.update(visible=True)
|
202 |
-
}
|
203 |
-
|
204 |
video_desc = detector.analyze_video_content(video)
|
205 |
formatted_desc = f"#Summary: {video_desc[:500] + '...' if len(video_desc) > 500 else video_desc}"
|
206 |
|
207 |
-
#
|
208 |
-
yield {
|
209 |
-
status: "Determining highlight types...",
|
210 |
-
video_description: formatted_desc,
|
211 |
-
highlight_types: "",
|
212 |
-
output_video: gr.update(visible=False),
|
213 |
-
analysis_accordion: gr.update(visible=True)
|
214 |
-
}
|
215 |
-
|
216 |
highlights = detector.determine_highlights(video_desc)
|
217 |
formatted_highlights = f"#Highlights to search for: {highlights[:500] + '...' if len(highlights) > 500 else highlights}"
|
218 |
-
|
219 |
-
# Update highlights as soon as they're available
|
220 |
-
yield {
|
221 |
-
status: "Detecting and extracting highlights...",
|
222 |
-
video_description: formatted_desc,
|
223 |
-
highlight_types: formatted_highlights,
|
224 |
-
output_video: gr.update(visible=False),
|
225 |
-
analysis_accordion: gr.update(visible=True)
|
226 |
-
}
|
227 |
|
|
|
228 |
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
229 |
temp_output = tmp_file.name
|
230 |
detector.create_highlight_video(video, temp_output)
|
231 |
|
232 |
-
return
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
|
240 |
except Exception as e:
|
241 |
-
return
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
process_btn.click(
|
250 |
-
|
251 |
inputs=[input_video],
|
252 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
)
|
254 |
|
255 |
return app
|
256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
# @spaces.GPU
|
258 |
-
# def on_process(video
|
259 |
# if not video:
|
260 |
# return {
|
261 |
# status: "Please upload a video",
|
262 |
# video_description: "",
|
263 |
# highlight_types: "",
|
264 |
-
# output_video: gr.update(visible=False)
|
|
|
265 |
# }
|
266 |
|
267 |
# try:
|
@@ -271,45 +242,64 @@ def create_ui(examples_path: str):
|
|
271 |
# status: "Video must be shorter than 20 minutes",
|
272 |
# video_description: "",
|
273 |
# highlight_types: "",
|
274 |
-
# output_video: gr.update(visible=False)
|
|
|
275 |
# }
|
276 |
|
277 |
-
#
|
278 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
# model, processor = load_model()
|
280 |
# detector = BatchedVideoHighlightDetector(model, processor, batch_size=8)
|
281 |
|
282 |
-
#
|
283 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
# video_desc = detector.analyze_video_content(video)
|
285 |
-
# #
|
286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
-
# progress(0.3, desc="Determining highlight types...")
|
289 |
-
# status.value = "Determining highlight types..."
|
290 |
# highlights = detector.determine_highlights(video_desc)
|
291 |
-
# #
|
292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
-
# progress(0.4, desc="Detecting and extracting highlights...")
|
295 |
-
# status.value = "Detecting and extracting highlights..."
|
296 |
# with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
297 |
# temp_output = tmp_file.name
|
298 |
# detector.create_highlight_video(video, temp_output)
|
299 |
|
300 |
-
# # progress(0.9, desc="Adding watermark...")
|
301 |
-
# # status.value = "Adding watermark..."
|
302 |
-
# # output_path = temp_output.replace('.mp4', '_watermark.mp4')
|
303 |
-
# # add_watermark(temp_output, output_path)
|
304 |
-
|
305 |
-
# # os.unlink(temp_output)
|
306 |
-
# progress(1.0, desc="Complete!")
|
307 |
-
|
308 |
# return {
|
309 |
# status: "Processing complete!",
|
310 |
-
# video_description:
|
311 |
-
# highlight_types:
|
312 |
-
# output_video: gr.update(value=temp_output, visible=True)
|
|
|
313 |
# }
|
314 |
|
315 |
# except Exception as e:
|
@@ -317,17 +307,19 @@ def create_ui(examples_path: str):
|
|
317 |
# status: f"Error processing video: {str(e)}",
|
318 |
# video_description: "",
|
319 |
# highlight_types: "",
|
320 |
-
# output_video: gr.update(visible=False)
|
|
|
321 |
# }
|
322 |
|
323 |
# process_btn.click(
|
324 |
# on_process,
|
325 |
# inputs=[input_video],
|
326 |
-
# outputs=[status, video_description, highlight_types, output_video]
|
327 |
# )
|
328 |
|
329 |
# return app
|
330 |
|
|
|
331 |
if __name__ == "__main__":
|
332 |
# Initialize CUDA
|
333 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
32 |
return f"{minutes}:{secs:02d}"
|
33 |
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def create_ui(examples_path: str):
|
36 |
examples_data = load_examples(examples_path)
|
37 |
|
|
|
90 |
with analysis_accordion:
|
91 |
video_description = gr.Markdown("", elem_id="video_desc")
|
92 |
highlight_types = gr.Markdown("", elem_id="highlight_types")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
@spaces.GPU
|
95 |
+
def process_video(video):
|
96 |
if not video:
|
97 |
+
return [
|
98 |
+
"Please upload a video",
|
99 |
+
"",
|
100 |
+
"",
|
101 |
+
None,
|
102 |
+
False
|
103 |
+
]
|
104 |
|
105 |
try:
|
106 |
duration = get_video_duration_seconds(video)
|
107 |
if duration > 1200: # 20 minutes
|
108 |
+
return [
|
109 |
+
"Video must be shorter than 20 minutes",
|
110 |
+
"",
|
111 |
+
"",
|
112 |
+
None,
|
113 |
+
False
|
114 |
+
]
|
115 |
+
|
116 |
+
# Load model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
model, processor = load_model()
|
118 |
detector = BatchedVideoHighlightDetector(model, processor, batch_size=8)
|
119 |
|
120 |
+
# Analyze content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
video_desc = detector.analyze_video_content(video)
|
122 |
formatted_desc = f"#Summary: {video_desc[:500] + '...' if len(video_desc) > 500 else video_desc}"
|
123 |
|
124 |
+
# Determine highlights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
highlights = detector.determine_highlights(video_desc)
|
126 |
formatted_highlights = f"#Highlights to search for: {highlights[:500] + '...' if len(highlights) > 500 else highlights}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
# Create highlight video
|
129 |
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
130 |
temp_output = tmp_file.name
|
131 |
detector.create_highlight_video(video, temp_output)
|
132 |
|
133 |
+
return [
|
134 |
+
"Processing complete!",
|
135 |
+
formatted_desc,
|
136 |
+
formatted_highlights,
|
137 |
+
temp_output,
|
138 |
+
True
|
139 |
+
]
|
140 |
|
141 |
except Exception as e:
|
142 |
+
return [
|
143 |
+
f"Error processing video: {str(e)}",
|
144 |
+
"",
|
145 |
+
"",
|
146 |
+
None,
|
147 |
+
False
|
148 |
+
]
|
149 |
+
|
150 |
+
def process_with_updates(video):
|
151 |
+
# Initial state
|
152 |
+
yield [
|
153 |
+
"Loading model...",
|
154 |
+
"",
|
155 |
+
"",
|
156 |
+
None,
|
157 |
+
True # Show accordion
|
158 |
+
]
|
159 |
+
|
160 |
+
# Analyzing video
|
161 |
+
yield [
|
162 |
+
"Analyzing video content...",
|
163 |
+
"",
|
164 |
+
"",
|
165 |
+
None,
|
166 |
+
True
|
167 |
+
]
|
168 |
+
|
169 |
+
# Get final results
|
170 |
+
results = process_video(video)
|
171 |
+
|
172 |
+
# If we're still processing, show an intermediate state
|
173 |
+
if results[0] != "Processing complete!":
|
174 |
+
yield [
|
175 |
+
"Detecting and extracting highlights...",
|
176 |
+
results[1], # description
|
177 |
+
results[2], # highlights
|
178 |
+
None,
|
179 |
+
True
|
180 |
+
]
|
181 |
+
|
182 |
+
# Return final state
|
183 |
+
yield results
|
184 |
|
185 |
process_btn.click(
|
186 |
+
process_with_updates,
|
187 |
inputs=[input_video],
|
188 |
+
outputs=[
|
189 |
+
status,
|
190 |
+
video_description,
|
191 |
+
highlight_types,
|
192 |
+
output_video,
|
193 |
+
analysis_accordion
|
194 |
+
]
|
195 |
)
|
196 |
|
197 |
return app
|
198 |
|
199 |
+
# gr.Markdown("## Try It Yourself!")
|
200 |
+
# with gr.Row():
|
201 |
+
# with gr.Column(scale=1):
|
202 |
+
# input_video = gr.Video(
|
203 |
+
# label="Upload your video (max 20 minutes)",
|
204 |
+
# interactive=True
|
205 |
+
# )
|
206 |
+
# process_btn = gr.Button("Process Video", variant="primary")
|
207 |
+
|
208 |
+
# with gr.Column(scale=1):
|
209 |
+
# output_video = gr.Video(
|
210 |
+
# label="Highlight Video",
|
211 |
+
# visible=False,
|
212 |
+
# interactive=False,
|
213 |
+
# )
|
214 |
+
|
215 |
+
# status = gr.Markdown()
|
216 |
+
|
217 |
+
# analysis_accordion = gr.Accordion(
|
218 |
+
# "Model chain of thought details",
|
219 |
+
# open=True,
|
220 |
+
# visible=False
|
221 |
+
# )
|
222 |
+
|
223 |
+
# with analysis_accordion:
|
224 |
+
# video_description = gr.Markdown("", elem_id="video_desc")
|
225 |
+
# highlight_types = gr.Markdown("", elem_id="highlight_types")
|
226 |
+
|
227 |
# @spaces.GPU
|
228 |
+
# def on_process(video):
|
229 |
# if not video:
|
230 |
# return {
|
231 |
# status: "Please upload a video",
|
232 |
# video_description: "",
|
233 |
# highlight_types: "",
|
234 |
+
# output_video: gr.update(visible=False),
|
235 |
+
# analysis_accordion: gr.update(visible=False)
|
236 |
# }
|
237 |
|
238 |
# try:
|
|
|
242 |
# status: "Video must be shorter than 20 minutes",
|
243 |
# video_description: "",
|
244 |
# highlight_types: "",
|
245 |
+
# output_video: gr.update(visible=False),
|
246 |
+
# analysis_accordion: gr.update(visible=False)
|
247 |
# }
|
248 |
|
249 |
+
# # Make accordion visible as soon as processing starts
|
250 |
+
# yield {
|
251 |
+
# status: "Loading model...",
|
252 |
+
# video_description: "",
|
253 |
+
# highlight_types: "",
|
254 |
+
# output_video: gr.update(visible=False),
|
255 |
+
# analysis_accordion: gr.update(visible=True)
|
256 |
+
# }
|
257 |
+
|
258 |
# model, processor = load_model()
|
259 |
# detector = BatchedVideoHighlightDetector(model, processor, batch_size=8)
|
260 |
|
261 |
+
# yield {
|
262 |
+
# status: "Analyzing video content...",
|
263 |
+
# video_description: "",
|
264 |
+
# highlight_types: "",
|
265 |
+
# output_video: gr.update(visible=False),
|
266 |
+
# analysis_accordion: gr.update(visible=True)
|
267 |
+
# }
|
268 |
+
|
269 |
# video_desc = detector.analyze_video_content(video)
|
270 |
+
# formatted_desc = f"#Summary: {video_desc[:500] + '...' if len(video_desc) > 500 else video_desc}"
|
271 |
+
|
272 |
+
# # Update description as soon as it's available
|
273 |
+
# yield {
|
274 |
+
# status: "Determining highlight types...",
|
275 |
+
# video_description: formatted_desc,
|
276 |
+
# highlight_types: "",
|
277 |
+
# output_video: gr.update(visible=False),
|
278 |
+
# analysis_accordion: gr.update(visible=True)
|
279 |
+
# }
|
280 |
|
|
|
|
|
281 |
# highlights = detector.determine_highlights(video_desc)
|
282 |
+
# formatted_highlights = f"#Highlights to search for: {highlights[:500] + '...' if len(highlights) > 500 else highlights}"
|
283 |
+
|
284 |
+
# # Update highlights as soon as they're available
|
285 |
+
# yield {
|
286 |
+
# status: "Detecting and extracting highlights...",
|
287 |
+
# video_description: formatted_desc,
|
288 |
+
# highlight_types: formatted_highlights,
|
289 |
+
# output_video: gr.update(visible=False),
|
290 |
+
# analysis_accordion: gr.update(visible=True)
|
291 |
+
# }
|
292 |
|
|
|
|
|
293 |
# with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
294 |
# temp_output = tmp_file.name
|
295 |
# detector.create_highlight_video(video, temp_output)
|
296 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
# return {
|
298 |
# status: "Processing complete!",
|
299 |
+
# video_description: formatted_desc,
|
300 |
+
# highlight_types: formatted_highlights,
|
301 |
+
# output_video: gr.update(value=temp_output, visible=True),
|
302 |
+
# analysis_accordion: gr.update(visible=True)
|
303 |
# }
|
304 |
|
305 |
# except Exception as e:
|
|
|
307 |
# status: f"Error processing video: {str(e)}",
|
308 |
# video_description: "",
|
309 |
# highlight_types: "",
|
310 |
+
# output_video: gr.update(visible=False),
|
311 |
+
# analysis_accordion: gr.update(visible=False)
|
312 |
# }
|
313 |
|
314 |
# process_btn.click(
|
315 |
# on_process,
|
316 |
# inputs=[input_video],
|
317 |
+
# outputs=[status, video_description, highlight_types, output_video, analysis_accordion]
|
318 |
# )
|
319 |
|
320 |
# return app
|
321 |
|
322 |
+
|
323 |
if __name__ == "__main__":
|
324 |
# Initialize CUDA
|
325 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|