Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoConfig, AutoModelForCausalLM, pipeline, AutoTokenizer, AutoModelForSeq2SeqLM | |
from janus.models import VLChatProcessor | |
import random | |
import numpy as np | |
import spaces | |
import json | |
import os | |
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model_checkpoint = "./Flux-Prompt" | |
enhancer_tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
enhancer_model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint).to(cuda_device) | |
model_path = "deepseek-ai/Janus-Pro-7B" | |
config = AutoConfig.from_pretrained(model_path) | |
language_config = config.language_config | |
language_config._attn_implementation = 'eager' | |
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, | |
language_config=language_config, | |
trust_remote_code=True) | |
if torch.cuda.is_available(): | |
vl_gpt = vl_gpt.to(torch.bfloat16).cuda() | |
else: | |
vl_gpt = vl_gpt.to(torch.float16) | |
vl_chat_processor = VLChatProcessor.from_pretrained(model_path) | |
tokenizer = vl_chat_processor.tokenizer | |
def generate(input_ids, | |
width, | |
height, | |
temperature, | |
cfg_weight, | |
parallel_size: int = 1, | |
image_token_num_per_image: int = 576, | |
patch_size: int = 16): | |
torch.cuda.empty_cache() | |
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device) | |
for i in range(parallel_size * 2): | |
tokens[i, :] = input_ids | |
if i % 2 != 0: | |
tokens[i, 1:-1] = vl_chat_processor.pad_id | |
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens) | |
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device) | |
pkv = None | |
for i in range(image_token_num_per_image): | |
with torch.no_grad(): | |
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, | |
use_cache=True, | |
past_key_values=pkv) | |
pkv = outputs.past_key_values | |
hidden_states = outputs.last_hidden_state | |
logits = vl_gpt.gen_head(hidden_states[:, -1, :]) | |
logit_cond = logits[0::2, :] | |
logit_uncond = logits[1::2, :] | |
logit_sum = logit_cond - logit_uncond | |
logits = logit_uncond + cfg_weight * logit_sum | |
probs = torch.softmax(logits / temperature, dim=-1) | |
next_token = torch.multinomial(probs, num_samples=1) | |
generated_tokens[:, i] = next_token.squeeze(dim=-1) | |
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) | |
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token) | |
inputs_embeds = img_embeds.unsqueeze(dim=1) | |
patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), | |
shape=[parallel_size, 8, width // patch_size, height // patch_size]) | |
return generated_tokens.to(dtype=torch.int), patches | |
def unpack(dec, width, height, parallel_size=1): | |
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) | |
dec = np.clip((dec + 1) / 2 * 255, 0, 255) | |
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8) | |
visual_img[:, :, :] = dec | |
return visual_img | |
def infer( | |
prompt, | |
guidance_scale, | |
temperature, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
seed = random.randint(0, 2000) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
np.random.seed(seed) | |
parallel_size = 1 | |
height=384 | |
width=384 | |
with torch.no_grad(): | |
messages = [ | |
{'role': '<|User|>', 'content': prompt}, | |
{'role': '<|Assistant|>', 'content': ''} | |
] | |
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( | |
conversations=messages, | |
sft_format=vl_chat_processor.sft_format, | |
system_prompt='' | |
) | |
text += vl_chat_processor.image_start_tag | |
input_ids = torch.LongTensor(tokenizer.encode(text)) | |
try: | |
output, patches = generate(input_ids, | |
width // 16 * 16, | |
height // 16 * 16, | |
cfg_weight=guidance_scale, | |
parallel_size=parallel_size, | |
temperature=temperature) | |
images = unpack(patches, | |
width // 16 * 16, | |
height // 16 * 16, | |
parallel_size=parallel_size) | |
return images[0] | |
except RuntimeError as e: | |
print(f"Error during generation: {e}") | |
raise gr.Error("Generation failed. Please try different parameters.") | |
finally: | |
torch.cuda.empty_cache() | |
def load_seeds(): | |
try: | |
with open('seeds.json', 'r') as f: | |
return json.load(f) | |
except FileNotFoundError: | |
print("seeds.json not found") | |
return {} | |
def prompt_generator(): | |
seeds = load_seeds() | |
if seeds: | |
seed = random.choice(seeds["seeds"]) | |
input_ids = enhancer_tokenizer(seed, return_tensors='pt').input_ids.to(cuda_device) | |
random_seed = random.randint(0, 2000) | |
torch.manual_seed(random_seed) | |
torch.cuda.manual_seed(random_seed) | |
answer = enhancer_model.generate(input_ids, max_length=256, num_return_sequences=1, temperature=1.0, repetition_penalty=1.2) | |
final_answer = enhancer_tokenizer.decode(answer[0], skip_special_tokens=True) | |
return final_answer | |
return "Unable to generate prompt - no seeds available" | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
.center-container { | |
display: flex; | |
justify-content: center; | |
align-items: center; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML(""" | |
<style> | |
::-webkit-scrollbar { | |
display: none; | |
} | |
.header-container { | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
gap: 1rem; | |
margin-bottom: 2rem; | |
} | |
.header-container h1 { | |
margin: 0; | |
font-size: 2.5rem; | |
font-weight: bold; | |
} | |
</style> | |
""") | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(elem_classes="header-container"): | |
gr.Image("./deepseek.jpg", | |
width=100, | |
height=100, | |
show_fullscreen_button=False, | |
show_download_button=False, | |
show_share_button=False, | |
container=False) | |
gr.Markdown("<h1>DeepSeek</h1><h1>Janus-Pro-7B</h1>") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
with gr.Row(elem_classes="center-container"): | |
run_prompt = gr.Button("Generate Prompt", scale=0, variant="primary") | |
run_image = gr.Button("Generate Image", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=5.0, | |
) | |
temperature = gr.Slider( | |
label="Temperature", | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.0, | |
) | |
gr.on( | |
triggers=[run_image.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
guidance_scale, | |
temperature | |
], | |
outputs=[result], | |
) | |
gr.on( | |
triggers=[run_prompt.click], | |
fn=prompt_generator, | |
outputs=[prompt], | |
) | |
if __name__ == "__main__": | |
demo.launch() |