File size: 8,517 Bytes
2484b09
 
b9ba0f9
 
 
 
d970b96
b9ba0f9
8d7e10f
d970b96
484699a
b9ba0f9
119cc6a
484699a
b9ba0f9
2484b09
b9ba0f9
 
d970b96
 
b9ba0f9
 
 
2484b09
d970b96
2484b09
d970b96
2484b09
b9ba0f9
d970b96
 
 
 
 
 
b9ba0f9
 
d970b96
 
 
 
 
 
 
 
 
 
 
 
b9ba0f9
d970b96
 
 
 
 
 
b9ba0f9
d970b96
 
 
 
 
b9ba0f9
 
d970b96
 
 
 
 
 
2484b09
d970b96
 
2484b09
d970b96
 
 
 
 
 
 
 
 
 
 
 
 
2484b09
 
 
d970b96
2484b09
 
b9ba0f9
 
 
 
 
 
 
 
 
d970b96
 
 
 
 
2484b09
d970b96
 
 
 
 
 
2484b09
d970b96
 
b9ba0f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2484b09
b9ba0f9
 
 
 
 
 
 
 
 
 
 
 
 
2484b09
 
 
 
89949af
b9ba0f9
 
 
 
 
 
 
 
d970b96
2484b09
89949af
 
 
 
3e05a21
89949af
 
 
 
 
 
 
 
 
 
 
 
 
 
2484b09
d970b96
 
b9ba0f9
 
 
 
 
 
341bfae
b9ba0f9
2484b09
 
 
 
 
 
b9ba0f9
 
 
d970b96
 
2484b09
 
 
 
b9ba0f9
2484b09
 
 
 
 
 
b9ba0f9
d970b96
b9ba0f9
d970b96
 
b9ba0f9
d970b96
b9ba0f9
 
d970b96
2484b09
d970b96
2484b09
 
 
 
b9ba0f9
2484b09
b9ba0f9
2484b09
 
d970b96
 
 
 
 
 
2484b09
d970b96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM, pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
from janus.models import VLChatProcessor
import random
import numpy as np
import spaces
import json
import os


cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_checkpoint = "./Flux-Prompt"
enhancer_tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
enhancer_model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint).to(cuda_device)

model_path = "deepseek-ai/Janus-Pro-7B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
                                             language_config=language_config,
                                             trust_remote_code=True)
if torch.cuda.is_available():
    vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
else:
    vl_gpt = vl_gpt.to(torch.float16)

vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer


def generate(input_ids,
             width,
             height,
             temperature,
             cfg_weight,
             parallel_size: int = 1,
             image_token_num_per_image: int = 576,
             patch_size: int = 16):
    torch.cuda.empty_cache()
    
    tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
    for i in range(parallel_size * 2):
        tokens[i, :] = input_ids
        if i % 2 != 0:
            tokens[i, 1:-1] = vl_chat_processor.pad_id
    inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
    generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)
   
    pkv = None
    for i in range(image_token_num_per_image):
        with torch.no_grad():
            outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds,
                                                use_cache=True,
                                                past_key_values=pkv)
            
            pkv = outputs.past_key_values
            hidden_states = outputs.last_hidden_state
            logits = vl_gpt.gen_head(hidden_states[:, -1, :])
            logit_cond = logits[0::2, :]
            logit_uncond = logits[1::2, :]
            logit_sum = logit_cond - logit_uncond
            logits = logit_uncond + cfg_weight * logit_sum
            probs = torch.softmax(logits / temperature, dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)
            generated_tokens[:, i] = next_token.squeeze(dim=-1)
            next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
            img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
            inputs_embeds = img_embeds.unsqueeze(dim=1)

    patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
                                                 shape=[parallel_size, 8, width // patch_size, height // patch_size])

    return generated_tokens.to(dtype=torch.int), patches

def unpack(dec, width, height, parallel_size=1):
    dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
    dec = np.clip((dec + 1) / 2 * 255, 0, 255)

    visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
    visual_img[:, :, :] = dec

    return visual_img

@torch.inference_mode()
@spaces.GPU()
def infer(
    prompt,
    guidance_scale,
    temperature,
    progress=gr.Progress(track_tqdm=True),
):
    
    seed = random.randint(0, 2000)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    np.random.seed(seed)
    parallel_size = 1
    height=384
    width=384
    
    with torch.no_grad():
        messages = [
            {'role': '<|User|>', 'content': prompt},
            {'role': '<|Assistant|>', 'content': ''}
        ]

        text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
            conversations=messages,
            sft_format=vl_chat_processor.sft_format,
            system_prompt=''
        )
        text += vl_chat_processor.image_start_tag

        input_ids = torch.LongTensor(tokenizer.encode(text))
        
        try:
            output, patches = generate(input_ids,
                                     width // 16 * 16,
                                     height // 16 * 16,
                                     cfg_weight=guidance_scale,
                                     parallel_size=parallel_size,
                                     temperature=temperature)
            
            images = unpack(patches,
                          width // 16 * 16,
                          height // 16 * 16,
                          parallel_size=parallel_size)
            
            return images[0]
            
        except RuntimeError as e:
            print(f"Error during generation: {e}")
            raise gr.Error("Generation failed. Please try different parameters.")
        finally:
            torch.cuda.empty_cache()

def load_seeds():
    try:
        with open('seeds.json', 'r') as f:
            return json.load(f)
    except FileNotFoundError:
        print("seeds.json not found")
        return {}

@spaces.GPU()
def prompt_generator():
    seeds = load_seeds()
    if seeds:
        seed = random.choice(seeds["seeds"])  
        input_ids = enhancer_tokenizer(seed, return_tensors='pt').input_ids.to(cuda_device)
        random_seed = random.randint(0, 2000)
        torch.manual_seed(random_seed)
        torch.cuda.manual_seed(random_seed)
        answer = enhancer_model.generate(input_ids, max_length=256, num_return_sequences=1, temperature=1.0, repetition_penalty=1.2)
        final_answer = enhancer_tokenizer.decode(answer[0], skip_special_tokens=True)
        return final_answer
    return "Unable to generate prompt - no seeds available"

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}

.center-container {
    display: flex;
    justify-content: center;
    align-items: center;
}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("""
    <style>
        ::-webkit-scrollbar {
            display: none; 
        }    
        .header-container {
            display: flex;
            align-items: center;
            justify-content: center;
            gap: 1rem;
            margin-bottom: 2rem;
        }
        .header-container h1 {
            margin: 0;
            font-size: 2.5rem;
            font-weight: bold;
        }
    </style>
    """)
    with gr.Column(elem_id="col-container"):
        with gr.Row(elem_classes="header-container"):
            gr.Image("./deepseek.jpg", 
                     width=100, 
                     height=100, 
                     show_fullscreen_button=False, 
                     show_download_button=False, 
                     show_share_button=False,
                     container=False)
            gr.Markdown("<h1>DeepSeek</h1><h1>Janus-Pro-7B</h1>")
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                placeholder="Enter your prompt",
                container=False,
            )  

        with gr.Row(elem_classes="center-container"):
            run_prompt = gr.Button("Generate Prompt", scale=0, variant="primary")
            run_image = gr.Button("Generate Image", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=5.0,
                )
                temperature = gr.Slider(
                    label="Temperature",
                    minimum=0.0,
                    maximum=2.0,
                    step=0.1,
                    value=1.0,
                )       

    gr.on(
        triggers=[run_image.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            guidance_scale,
            temperature 
        ],
        outputs=[result],
    )

    gr.on(
        triggers=[run_prompt.click],
        fn=prompt_generator,
        outputs=[prompt],
    )

if __name__ == "__main__":
    demo.launch()