Spaces:
Runtime error
Runtime error
File size: 8,517 Bytes
2484b09 b9ba0f9 d970b96 b9ba0f9 8d7e10f d970b96 484699a b9ba0f9 119cc6a 484699a b9ba0f9 2484b09 b9ba0f9 d970b96 b9ba0f9 2484b09 d970b96 2484b09 d970b96 2484b09 b9ba0f9 d970b96 b9ba0f9 d970b96 b9ba0f9 d970b96 b9ba0f9 d970b96 b9ba0f9 d970b96 2484b09 d970b96 2484b09 d970b96 2484b09 d970b96 2484b09 b9ba0f9 d970b96 2484b09 d970b96 2484b09 d970b96 b9ba0f9 2484b09 b9ba0f9 2484b09 89949af b9ba0f9 d970b96 2484b09 89949af 3e05a21 89949af 2484b09 d970b96 b9ba0f9 341bfae b9ba0f9 2484b09 b9ba0f9 d970b96 2484b09 b9ba0f9 2484b09 b9ba0f9 d970b96 b9ba0f9 d970b96 b9ba0f9 d970b96 b9ba0f9 d970b96 2484b09 d970b96 2484b09 b9ba0f9 2484b09 b9ba0f9 2484b09 d970b96 2484b09 d970b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM, pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
from janus.models import VLChatProcessor
import random
import numpy as np
import spaces
import json
import os
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_checkpoint = "./Flux-Prompt"
enhancer_tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
enhancer_model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint).to(cuda_device)
model_path = "deepseek-ai/Janus-Pro-7B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
language_config=language_config,
trust_remote_code=True)
if torch.cuda.is_available():
vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
else:
vl_gpt = vl_gpt.to(torch.float16)
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
def generate(input_ids,
width,
height,
temperature,
cfg_weight,
parallel_size: int = 1,
image_token_num_per_image: int = 576,
patch_size: int = 16):
torch.cuda.empty_cache()
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)
pkv = None
for i in range(image_token_num_per_image):
with torch.no_grad():
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds,
use_cache=True,
past_key_values=pkv)
pkv = outputs.past_key_values
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logit_sum = logit_cond - logit_uncond
logits = logit_uncond + cfg_weight * logit_sum
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, width // patch_size, height // patch_size])
return generated_tokens.to(dtype=torch.int), patches
def unpack(dec, width, height, parallel_size=1):
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
return visual_img
@torch.inference_mode()
@spaces.GPU()
def infer(
prompt,
guidance_scale,
temperature,
progress=gr.Progress(track_tqdm=True),
):
seed = random.randint(0, 2000)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
parallel_size = 1
height=384
width=384
with torch.no_grad():
messages = [
{'role': '<|User|>', 'content': prompt},
{'role': '<|Assistant|>', 'content': ''}
]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=messages,
sft_format=vl_chat_processor.sft_format,
system_prompt=''
)
text += vl_chat_processor.image_start_tag
input_ids = torch.LongTensor(tokenizer.encode(text))
try:
output, patches = generate(input_ids,
width // 16 * 16,
height // 16 * 16,
cfg_weight=guidance_scale,
parallel_size=parallel_size,
temperature=temperature)
images = unpack(patches,
width // 16 * 16,
height // 16 * 16,
parallel_size=parallel_size)
return images[0]
except RuntimeError as e:
print(f"Error during generation: {e}")
raise gr.Error("Generation failed. Please try different parameters.")
finally:
torch.cuda.empty_cache()
def load_seeds():
try:
with open('seeds.json', 'r') as f:
return json.load(f)
except FileNotFoundError:
print("seeds.json not found")
return {}
@spaces.GPU()
def prompt_generator():
seeds = load_seeds()
if seeds:
seed = random.choice(seeds["seeds"])
input_ids = enhancer_tokenizer(seed, return_tensors='pt').input_ids.to(cuda_device)
random_seed = random.randint(0, 2000)
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
answer = enhancer_model.generate(input_ids, max_length=256, num_return_sequences=1, temperature=1.0, repetition_penalty=1.2)
final_answer = enhancer_tokenizer.decode(answer[0], skip_special_tokens=True)
return final_answer
return "Unable to generate prompt - no seeds available"
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
.center-container {
display: flex;
justify-content: center;
align-items: center;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("""
<style>
::-webkit-scrollbar {
display: none;
}
.header-container {
display: flex;
align-items: center;
justify-content: center;
gap: 1rem;
margin-bottom: 2rem;
}
.header-container h1 {
margin: 0;
font-size: 2.5rem;
font-weight: bold;
}
</style>
""")
with gr.Column(elem_id="col-container"):
with gr.Row(elem_classes="header-container"):
gr.Image("./deepseek.jpg",
width=100,
height=100,
show_fullscreen_button=False,
show_download_button=False,
show_share_button=False,
container=False)
gr.Markdown("<h1>DeepSeek</h1><h1>Janus-Pro-7B</h1>")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
placeholder="Enter your prompt",
container=False,
)
with gr.Row(elem_classes="center-container"):
run_prompt = gr.Button("Generate Prompt", scale=0, variant="primary")
run_image = gr.Button("Generate Image", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
)
gr.on(
triggers=[run_image.click, prompt.submit],
fn=infer,
inputs=[
prompt,
guidance_scale,
temperature
],
outputs=[result],
)
gr.on(
triggers=[run_prompt.click],
fn=prompt_generator,
outputs=[prompt],
)
if __name__ == "__main__":
demo.launch() |