Spaces:
Sleeping
Sleeping
import os | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' | |
os.environ['CUDA_VISIBLE_DEVICES'] = '0' | |
import tensorflow as tf | |
import tf_bodypix | |
from tf_bodypix.api import download_model, load_model, BodyPixModelPaths | |
from tf_bodypix.draw import draw_poses | |
from tensorflow.keras import preprocessing | |
import cv2 | |
import json | |
from matplotlib import pyplot as plt | |
import numpy as np | |
from calculations import measure_body_sizes | |
bodypix_model = load_model(download_model(BodyPixModelPaths.MOBILENET_FLOAT_50_STRIDE_16)) | |
input_path = 'input1/files/20' | |
front_image = 'front_img.jpg' | |
side_image = 'side_img.jpg' | |
output_path = 'output' | |
real_height_cm = 173.0 # Replace with the real height in cm | |
rainbow = [ | |
[110, 64, 170], [143, 61, 178], [178, 60, 178], [210, 62, 167], | |
[238, 67, 149], [255, 78, 125], [255, 94, 99], [255, 115, 75], | |
[255, 140, 56], [239, 167, 47], [217, 194, 49], [194, 219, 64], | |
[175, 240, 91], [135, 245, 87], [96, 247, 96], [64, 243, 115], | |
[40, 234, 141], [28, 219, 169], [26, 199, 194], [33, 176, 213], | |
[47, 150, 224], [65, 125, 224], [84, 101, 214], [99, 81, 195] | |
] | |
fimage = preprocessing.image.load_img(input_path+'/'+front_image) | |
simage = preprocessing.image.load_img(input_path+'/'+side_image) | |
# image converted to image array | |
fimage_array = preprocessing.image.img_to_array(fimage) | |
simage_array = preprocessing.image.img_to_array(simage) | |
# bodypix prediction | |
frontresult = bodypix_model.predict_single(fimage_array) | |
sideresult = bodypix_model.predict_single(simage_array) | |
front_mask = frontresult.get_mask(threshold=0.75) | |
side_mask = sideresult.get_mask(threshold=0.75) | |
preprocessing.image.save_img(f'{output_path}/frontbodypix-mask.jpg',front_mask) | |
preprocessing.image.save_img(f'{output_path}/sidebodypix-mask.jpg',side_mask) | |
front_colored_mask = frontresult.get_colored_part_mask(front_mask, rainbow) | |
side_colored_mask = sideresult.get_colored_part_mask(side_mask, rainbow) | |
print(front_colored_mask.shape) | |
preprocessing.image.save_img(f'{output_path}/frontbodypix-colored-mask.jpg',front_colored_mask) | |
preprocessing.image.save_img(f'{output_path}/sidebodypix-colored-mask.jpg',side_colored_mask) | |
frontposes = frontresult.get_poses() | |
front_image_with_poses = draw_poses( | |
fimage_array.copy(), # create a copy to ensure we are not modifing the source image | |
frontposes, | |
keypoints_color=(255, 100, 100), | |
skeleton_color=(100, 100, 255) | |
) | |
sideposes = sideresult.get_poses() | |
side_image_with_poses = draw_poses( | |
simage_array.copy(), # create a copy to ensure we are not modifing the source image | |
sideposes, | |
keypoints_color=(255, 100, 100), | |
skeleton_color=(100, 100, 255) | |
) | |
print(np.array(simage).shape) | |
print(np.array(side_colored_mask).shape) | |
preprocessing.image.save_img(f'{output_path}/frontbodypix-poses.jpg', front_image_with_poses) | |
preprocessing.image.save_img(f'{output_path}/sidebodypix-poses.jpg', side_image_with_poses) | |
body_sizes = measure_body_sizes(side_colored_mask, front_colored_mask, sideposes, frontposes, real_height_cm, rainbow) | |
print(body_sizes) | |
print(np.shape(body_sizes)) | |
print(type(body_sizes)) | |
print(body_sizes[0]) | |
import pandas as pd | |
print(pd.DataFrame([body_sizes[0]])) | |
file_name = "output/measurements.json" | |
# Open the file in write mode and save the dictionary as JSON | |
with open(file_name, 'w') as json_file: | |
json.dump(body_sizes, json_file, indent=4) | |
print(f"body_sizes saved to {output_path}") |