Spaces:
Sleeping
Sleeping
SalehAhmad
commited on
Commit
·
ee83b99
1
Parent(s):
8507802
new
Browse files- .gitignore +3 -1
- app.py +52 -27
- calculations.py +71 -17
- sizing.py +58 -27
.gitignore
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
env/
|
|
|
|
|
|
1 |
+
env/
|
2 |
+
ENV/
|
3 |
+
__pycache__/
|
app.py
CHANGED
@@ -1,50 +1,75 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
import os
|
4 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
|
|
5 |
|
6 |
import tensorflow as tf
|
|
|
7 |
from tf_bodypix.api import download_model, load_model, BodyPixModelPaths
|
8 |
-
from tf_bodypix.draw import draw_poses
|
9 |
from tensorflow.keras import preprocessing
|
10 |
import cv2
|
11 |
import json
|
|
|
12 |
import numpy as np
|
13 |
from calculations import measure_body_sizes
|
|
|
|
|
14 |
|
15 |
# Load BodyPix model
|
16 |
bodypix_model = load_model(download_model(BodyPixModelPaths.MOBILENET_FLOAT_50_STRIDE_16))
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
mask = result.get_mask(threshold=0.75)
|
26 |
-
# colored_mask = result.get_colored_part_mask(mask)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
print(poses)
|
31 |
-
# image_with_poses = draw_poses(
|
32 |
-
# front_image_array.copy(), # create a copy to ensure we are not modifying the source image
|
33 |
-
# poses,
|
34 |
-
# keypoints_color=(255, 100, 100),
|
35 |
-
# skeleton_color=(100, 100, 255)
|
36 |
-
# )
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
#
|
46 |
-
|
47 |
|
|
|
|
|
48 |
return measurements_df
|
49 |
|
50 |
# Create the Gradio interface
|
|
|
|
|
|
|
1 |
import os
|
2 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
3 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
4 |
|
5 |
import tensorflow as tf
|
6 |
+
import tf_bodypix
|
7 |
from tf_bodypix.api import download_model, load_model, BodyPixModelPaths
|
8 |
+
from tf_bodypix.draw import draw_poses
|
9 |
from tensorflow.keras import preprocessing
|
10 |
import cv2
|
11 |
import json
|
12 |
+
from matplotlib import pyplot as plt
|
13 |
import numpy as np
|
14 |
from calculations import measure_body_sizes
|
15 |
+
import gradio as gr
|
16 |
+
import pandas as pd
|
17 |
|
18 |
# Load BodyPix model
|
19 |
bodypix_model = load_model(download_model(BodyPixModelPaths.MOBILENET_FLOAT_50_STRIDE_16))
|
20 |
|
21 |
+
rainbow = [
|
22 |
+
[110, 64, 170], [143, 61, 178], [178, 60, 178], [210, 62, 167],
|
23 |
+
[238, 67, 149], [255, 78, 125], [255, 94, 99], [255, 115, 75],
|
24 |
+
[255, 140, 56], [239, 167, 47], [217, 194, 49], [194, 219, 64],
|
25 |
+
[175, 240, 91], [135, 245, 87], [96, 247, 96], [64, 243, 115],
|
26 |
+
[40, 234, 141], [28, 219, 169], [26, 199, 194], [33, 176, 213],
|
27 |
+
[47, 150, 224], [65, 125, 224], [84, 101, 214], [99, 81, 195]
|
28 |
+
]
|
29 |
+
|
30 |
+
def process_images(front_img, side_img, real_height_cm):
|
31 |
+
fimage_array = preprocessing.image.img_to_array(front_img)
|
32 |
+
simage_array = preprocessing.image.img_to_array(side_img)
|
33 |
+
|
34 |
+
# bodypix prediction
|
35 |
+
frontresult = bodypix_model.predict_single(fimage_array)
|
36 |
+
sideresult = bodypix_model.predict_single(simage_array)
|
37 |
+
|
38 |
+
front_mask = frontresult.get_mask(threshold=0.75)
|
39 |
+
side_mask = sideresult.get_mask(threshold=0.75)
|
40 |
+
|
41 |
+
# preprocessing.image.save_img(f'{output_path}/frontbodypix-mask.jpg',front_mask)
|
42 |
+
# preprocessing.image.save_img(f'{output_path}/sidebodypix-mask.jpg',side_mask)
|
43 |
|
44 |
+
front_colored_mask = frontresult.get_colored_part_mask(front_mask, rainbow)
|
45 |
+
side_colored_mask = sideresult.get_colored_part_mask(side_mask, rainbow)
|
|
|
|
|
46 |
|
47 |
+
# preprocessing.image.save_img(f'{output_path}/frontbodypix-colored-mask.jpg',front_colored_mask)
|
48 |
+
# preprocessing.image.save_img(f'{output_path}/sidebodypix-colored-mask.jpg',side_colored_mask)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
frontposes = frontresult.get_poses()
|
51 |
+
front_image_with_poses = draw_poses(
|
52 |
+
fimage_array.copy(), # create a copy to ensure we are not modifing the source image
|
53 |
+
frontposes,
|
54 |
+
keypoints_color=(255, 100, 100),
|
55 |
+
skeleton_color=(100, 100, 255)
|
56 |
+
)
|
57 |
|
58 |
+
sideposes = sideresult.get_poses()
|
59 |
+
side_image_with_poses = draw_poses(
|
60 |
+
simage_array.copy(), # create a copy to ensure we are not modifing the source image
|
61 |
+
sideposes,
|
62 |
+
keypoints_color=(255, 100, 100),
|
63 |
+
skeleton_color=(100, 100, 255)
|
64 |
+
)
|
65 |
+
# print(np.array(simage).shape)
|
66 |
+
# print(np.array(side_colored_mask).shape)
|
67 |
|
68 |
+
# preprocessing.image.save_img(f'{output_path}/frontbodypix-poses.jpg', front_image_with_poses)
|
69 |
+
# preprocessing.image.save_img(f'{output_path}/sidebodypix-poses.jpg', side_image_with_poses)
|
70 |
|
71 |
+
body_sizes = measure_body_sizes(side_colored_mask, front_colored_mask, sideposes, frontposes, real_height_cm, rainbow)
|
72 |
+
measurements_df = pd.DataFrame([body_sizes[0]])
|
73 |
return measurements_df
|
74 |
|
75 |
# Create the Gradio interface
|
calculations.py
CHANGED
@@ -1,4 +1,8 @@
|
|
1 |
import math
|
|
|
|
|
|
|
|
|
2 |
|
3 |
def euclidean_distance(point1, point2):
|
4 |
return math.sqrt((point2[0] - point1[0]) ** 2 + (point2[1] - point1[1]) ** 2)
|
@@ -7,39 +11,89 @@ def convert_to_real_measurements(pixel_measurement, pixel_height, real_height_cm
|
|
7 |
height_ratio = real_height_cm / pixel_height
|
8 |
return pixel_measurement * height_ratio
|
9 |
|
10 |
-
def measure_body_sizes(
|
11 |
"""Measure various body sizes based on detected poses."""
|
12 |
measurements = []
|
13 |
-
|
|
|
|
|
14 |
keypoints = pose[0] # This should directly give us the dictionary
|
15 |
-
|
16 |
# Extract positions directly from keypoints
|
|
|
|
|
|
|
|
|
17 |
left_shoulder = keypoints[5].position
|
18 |
right_shoulder = keypoints[6].position
|
|
|
|
|
|
|
|
|
19 |
left_hip = keypoints[11].position
|
20 |
right_hip = keypoints[12].position
|
|
|
|
|
21 |
left_ankle = keypoints[15].position
|
22 |
right_ankle = keypoints[16].position
|
23 |
-
left_wrist = keypoints[9].position
|
24 |
-
right_wrist = keypoints[10].position
|
25 |
-
left_eye = keypoints[1].position
|
26 |
-
right_eye = keypoints[2].position
|
27 |
|
28 |
# Calculate pixel height (from the top of the head to the bottom of the ankle)
|
29 |
pixel_height = euclidean_distance((left_eye.x, left_eye.y), (left_ankle.x, left_ankle.y))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
# Calculate other pixel measurements
|
32 |
-
shoulder_width_pixels = euclidean_distance((left_shoulder.x, left_shoulder.y), (right_shoulder.x, right_shoulder.y))
|
33 |
-
leg_length_pixels = euclidean_distance((left_hip.x, left_hip.y), (left_ankle.x, left_ankle.y))
|
34 |
-
arm_length_pixels = euclidean_distance((left_shoulder.x, left_shoulder.y), (left_wrist.x, left_wrist.y))
|
35 |
-
shoulder_to_waist_pixels = euclidean_distance((left_shoulder.x, left_shoulder.y), (left_hip.x, left_hip.y))
|
36 |
|
37 |
# Convert pixel measurements to real measurements using the height ratio
|
38 |
measurements.append({
|
39 |
-
"shoulder_width_cm":
|
40 |
-
"leg_length_cm":
|
41 |
-
"arm_length_cm":
|
42 |
-
"shoulder_to_waist_cm":
|
|
|
|
|
43 |
})
|
44 |
|
45 |
-
return measurements
|
|
|
1 |
import math
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import cv2
|
5 |
+
from tensorflow.keras import preprocessing
|
6 |
|
7 |
def euclidean_distance(point1, point2):
|
8 |
return math.sqrt((point2[0] - point1[0]) ** 2 + (point2[1] - point1[1]) ** 2)
|
|
|
11 |
height_ratio = real_height_cm / pixel_height
|
12 |
return pixel_measurement * height_ratio
|
13 |
|
14 |
+
def measure_body_sizes(side_colored_mask, front_colored_mask, sideposes, frontposes, real_height_cm, rainbow):
|
15 |
"""Measure various body sizes based on detected poses."""
|
16 |
measurements = []
|
17 |
+
|
18 |
+
for pose in frontposes:
|
19 |
+
# Assuming each `pose` is a dictionary with 'keypoints' that are already in the required format
|
20 |
keypoints = pose[0] # This should directly give us the dictionary
|
21 |
+
|
22 |
# Extract positions directly from keypoints
|
23 |
+
left_eye = keypoints[1].position
|
24 |
+
right_eye = keypoints[2].position
|
25 |
+
nose = keypoints[3].position
|
26 |
+
right_ear = keypoints[4].position
|
27 |
left_shoulder = keypoints[5].position
|
28 |
right_shoulder = keypoints[6].position
|
29 |
+
left_elbow = keypoints[7].position
|
30 |
+
right_elbow = keypoints[8].position
|
31 |
+
left_wrist = keypoints[9].position
|
32 |
+
right_wrist = keypoints[10].position
|
33 |
left_hip = keypoints[11].position
|
34 |
right_hip = keypoints[12].position
|
35 |
+
left_knee = keypoints[13].position
|
36 |
+
right_knee = keypoints[14].position
|
37 |
left_ankle = keypoints[15].position
|
38 |
right_ankle = keypoints[16].position
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Calculate pixel height (from the top of the head to the bottom of the ankle)
|
41 |
pixel_height = euclidean_distance((left_eye.x, left_eye.y), (left_ankle.x, left_ankle.y))
|
42 |
+
|
43 |
+
|
44 |
+
shoulder_width_cm = convert_to_real_measurements(
|
45 |
+
euclidean_distance((left_shoulder.x, left_shoulder.y),(right_shoulder.x, right_shoulder.y)),
|
46 |
+
pixel_height, real_height_cm
|
47 |
+
)
|
48 |
+
|
49 |
+
# arm_length_cm = convert_to_real_measurements(
|
50 |
+
# euclidean_distance((right_shoulder.x, right_shoulder.y), (right_elbow.x, right_elbow.y)),
|
51 |
+
# pixel_height, real_height_cm
|
52 |
+
# ) + convert_to_real_measurements(
|
53 |
+
# euclidean_distance((right_elbow.x, right_elbow.y), (right_wrist.x, right_wrist.y)),
|
54 |
+
# pixel_height, real_height_cm
|
55 |
+
# )
|
56 |
+
|
57 |
+
# leg_length_cm = convert_to_real_measurements(
|
58 |
+
# euclidean_distance((left_hip.x, left_hip.y), (left_knee.x, left_knee.y)),
|
59 |
+
# pixel_height, real_height_cm
|
60 |
+
# ) + convert_to_real_measurements(
|
61 |
+
# euclidean_distance((left_knee.x, left_knee.y), (left_ankle.x, left_ankle.y)),
|
62 |
+
# pixel_height, real_height_cm
|
63 |
+
# )
|
64 |
+
|
65 |
+
arm_length_cm = convert_to_real_measurements(
|
66 |
+
euclidean_distance((left_shoulder.x, left_shoulder.y), (left_wrist.x, left_wrist.y)),
|
67 |
+
pixel_height, real_height_cm
|
68 |
+
)
|
69 |
+
|
70 |
+
leg_length_cm = convert_to_real_measurements(
|
71 |
+
euclidean_distance((left_hip.x, left_hip.y), (left_ankle.x, right_ankle.y)),
|
72 |
+
pixel_height, real_height_cm
|
73 |
+
)
|
74 |
+
|
75 |
+
shoulder_to_waist_cm = convert_to_real_measurements(
|
76 |
+
euclidean_distance((left_shoulder.x, left_shoulder.y), (left_hip.x, left_hip.y)),
|
77 |
+
pixel_height, real_height_cm
|
78 |
+
)
|
79 |
+
|
80 |
+
# Calculate waist circumference using the ellipse circumference formula
|
81 |
+
a = euclidean_distance((left_hip.x, left_hip.y), (right_hip.x, right_hip.y)) / 2
|
82 |
+
# b = euclidean_distance((), ()) / 2
|
83 |
+
|
84 |
+
# Use Ramanujan's approximation for the circumference of an ellipse
|
85 |
+
# waist_circumference_px = math.pi * (3*(a + b) - math.sqrt((3*a + b)*(a + 3*b)))
|
86 |
+
waist_circumference_cm = 90 #convert_to_real_measurements(waist_circumference_px, pixel_height, real_height_cm)
|
87 |
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
# Convert pixel measurements to real measurements using the height ratio
|
90 |
measurements.append({
|
91 |
+
"shoulder_width_cm": shoulder_width_cm,
|
92 |
+
"leg_length_cm": leg_length_cm,
|
93 |
+
"arm_length_cm": arm_length_cm,
|
94 |
+
"shoulder_to_waist_cm": shoulder_to_waist_cm,
|
95 |
+
"height_cm": real_height_cm,
|
96 |
+
"waist_circumference_cm": waist_circumference_cm
|
97 |
})
|
98 |
|
99 |
+
return measurements
|
sizing.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
import os
|
2 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
3 |
-
|
4 |
-
import torch
|
5 |
-
torch.set_default_device('cuda:0')
|
6 |
|
7 |
import tensorflow as tf
|
|
|
8 |
from tf_bodypix.api import download_model, load_model, BodyPixModelPaths
|
9 |
-
from tf_bodypix.draw import draw_poses
|
10 |
from tensorflow.keras import preprocessing
|
11 |
import cv2
|
12 |
import json
|
@@ -16,47 +15,79 @@ from calculations import measure_body_sizes
|
|
16 |
|
17 |
bodypix_model = load_model(download_model(BodyPixModelPaths.MOBILENET_FLOAT_50_STRIDE_16))
|
18 |
|
19 |
-
input_path = 'input1/files/
|
20 |
-
|
|
|
21 |
output_path = 'output'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
|
|
24 |
|
25 |
# image converted to image array
|
26 |
-
|
|
|
27 |
|
28 |
# bodypix prediction
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
keypoints_color=(255, 100, 100),
|
44 |
skeleton_color=(100, 100, 255)
|
45 |
)
|
46 |
-
# print(poses)
|
47 |
-
preprocessing.image.save_img(f'{output_path}/bodypix-poses.jpg', image_with_poses)
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
57 |
|
|
|
58 |
# Open the file in write mode and save the dictionary as JSON
|
59 |
with open(file_name, 'w') as json_file:
|
60 |
json.dump(body_sizes, json_file, indent=4)
|
61 |
|
62 |
-
print(f"body_sizes saved to {
|
|
|
1 |
import os
|
2 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
3 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
|
|
|
|
4 |
|
5 |
import tensorflow as tf
|
6 |
+
import tf_bodypix
|
7 |
from tf_bodypix.api import download_model, load_model, BodyPixModelPaths
|
8 |
+
from tf_bodypix.draw import draw_poses
|
9 |
from tensorflow.keras import preprocessing
|
10 |
import cv2
|
11 |
import json
|
|
|
15 |
|
16 |
bodypix_model = load_model(download_model(BodyPixModelPaths.MOBILENET_FLOAT_50_STRIDE_16))
|
17 |
|
18 |
+
input_path = 'input1/files/20'
|
19 |
+
front_image = 'front_img.jpg'
|
20 |
+
side_image = 'side_img.jpg'
|
21 |
output_path = 'output'
|
22 |
+
real_height_cm = 173.0 # Replace with the real height in cm
|
23 |
+
|
24 |
+
rainbow = [
|
25 |
+
[110, 64, 170], [143, 61, 178], [178, 60, 178], [210, 62, 167],
|
26 |
+
[238, 67, 149], [255, 78, 125], [255, 94, 99], [255, 115, 75],
|
27 |
+
[255, 140, 56], [239, 167, 47], [217, 194, 49], [194, 219, 64],
|
28 |
+
[175, 240, 91], [135, 245, 87], [96, 247, 96], [64, 243, 115],
|
29 |
+
[40, 234, 141], [28, 219, 169], [26, 199, 194], [33, 176, 213],
|
30 |
+
[47, 150, 224], [65, 125, 224], [84, 101, 214], [99, 81, 195]
|
31 |
+
]
|
32 |
|
33 |
+
fimage = preprocessing.image.load_img(input_path+'/'+front_image)
|
34 |
+
simage = preprocessing.image.load_img(input_path+'/'+side_image)
|
35 |
|
36 |
# image converted to image array
|
37 |
+
fimage_array = preprocessing.image.img_to_array(fimage)
|
38 |
+
simage_array = preprocessing.image.img_to_array(simage)
|
39 |
|
40 |
# bodypix prediction
|
41 |
+
frontresult = bodypix_model.predict_single(fimage_array)
|
42 |
+
sideresult = bodypix_model.predict_single(simage_array)
|
43 |
+
|
44 |
+
front_mask = frontresult.get_mask(threshold=0.75)
|
45 |
+
side_mask = sideresult.get_mask(threshold=0.75)
|
46 |
|
47 |
+
preprocessing.image.save_img(f'{output_path}/frontbodypix-mask.jpg',front_mask)
|
48 |
+
preprocessing.image.save_img(f'{output_path}/sidebodypix-mask.jpg',side_mask)
|
49 |
|
50 |
+
front_colored_mask = frontresult.get_colored_part_mask(front_mask, rainbow)
|
51 |
+
side_colored_mask = sideresult.get_colored_part_mask(side_mask, rainbow)
|
52 |
|
53 |
+
print(front_colored_mask.shape)
|
54 |
+
preprocessing.image.save_img(f'{output_path}/frontbodypix-colored-mask.jpg',front_colored_mask)
|
55 |
+
preprocessing.image.save_img(f'{output_path}/sidebodypix-colored-mask.jpg',side_colored_mask)
|
56 |
+
|
57 |
+
frontposes = frontresult.get_poses()
|
58 |
+
front_image_with_poses = draw_poses(
|
59 |
+
fimage_array.copy(), # create a copy to ensure we are not modifing the source image
|
60 |
+
frontposes,
|
61 |
keypoints_color=(255, 100, 100),
|
62 |
skeleton_color=(100, 100, 255)
|
63 |
)
|
|
|
|
|
64 |
|
65 |
+
sideposes = sideresult.get_poses()
|
66 |
+
side_image_with_poses = draw_poses(
|
67 |
+
simage_array.copy(), # create a copy to ensure we are not modifing the source image
|
68 |
+
sideposes,
|
69 |
+
keypoints_color=(255, 100, 100),
|
70 |
+
skeleton_color=(100, 100, 255)
|
71 |
+
)
|
72 |
+
print(np.array(simage).shape)
|
73 |
+
print(np.array(side_colored_mask).shape)
|
74 |
|
75 |
|
76 |
+
preprocessing.image.save_img(f'{output_path}/frontbodypix-poses.jpg', front_image_with_poses)
|
77 |
+
preprocessing.image.save_img(f'{output_path}/sidebodypix-poses.jpg', side_image_with_poses)
|
78 |
+
|
79 |
+
body_sizes = measure_body_sizes(side_colored_mask, front_colored_mask, sideposes, frontposes, real_height_cm, rainbow)
|
80 |
+
print(body_sizes)
|
81 |
|
82 |
+
print(np.shape(body_sizes))
|
83 |
+
print(type(body_sizes))
|
84 |
+
print(body_sizes[0])
|
85 |
+
import pandas as pd
|
86 |
+
print(pd.DataFrame([body_sizes[0]]))
|
87 |
|
88 |
+
file_name = "output/measurements.json"
|
89 |
# Open the file in write mode and save the dictionary as JSON
|
90 |
with open(file_name, 'w') as json_file:
|
91 |
json.dump(body_sizes, json_file, indent=4)
|
92 |
|
93 |
+
print(f"body_sizes saved to {output_path}")
|