Spaces:
Runtime error
Runtime error
import math | |
import os | |
import cv2 | |
import numpy as np | |
from PIL import Image, ImageDraw | |
from shapely.geometry import Polygon | |
from postprocess.poly_nms import poly_intersection | |
class RandomScaling: | |
def __init__(self, size=800, scale=(3.0 / 4, 5.0 / 2), **kwargs): | |
"""Random scale the image while keeping aspect. | |
Args: | |
size (int) : Base size before scaling. | |
scale (tuple(float)) : The range of scaling. | |
""" | |
assert isinstance(size, int) | |
assert isinstance(scale, float) or isinstance(scale, tuple) | |
self.size = size | |
self.scale = scale if isinstance(scale, tuple) else (1 - scale, 1 + scale) | |
def __call__(self, data): | |
image = data["image"] | |
text_polys = data["polys"] | |
h, w, _ = image.shape | |
aspect_ratio = np.random.uniform(min(self.scale), max(self.scale)) | |
scales = self.size * 1.0 / max(h, w) * aspect_ratio | |
scales = np.array([scales, scales]) | |
out_size = (int(h * scales[1]), int(w * scales[0])) | |
image = cv2.resize(image, out_size[::-1]) | |
data["image"] = image | |
text_polys[:, :, 0::2] = text_polys[:, :, 0::2] * scales[1] | |
text_polys[:, :, 1::2] = text_polys[:, :, 1::2] * scales[0] | |
data["polys"] = text_polys | |
return data | |
class RandomCropFlip: | |
def __init__( | |
self, pad_ratio=0.1, crop_ratio=0.5, iter_num=1, min_area_ratio=0.2, **kwargs | |
): | |
"""Random crop and flip a patch of the image. | |
Args: | |
crop_ratio (float): The ratio of cropping. | |
iter_num (int): Number of operations. | |
min_area_ratio (float): Minimal area ratio between cropped patch | |
and original image. | |
""" | |
assert isinstance(crop_ratio, float) | |
assert isinstance(iter_num, int) | |
assert isinstance(min_area_ratio, float) | |
self.pad_ratio = pad_ratio | |
self.epsilon = 1e-2 | |
self.crop_ratio = crop_ratio | |
self.iter_num = iter_num | |
self.min_area_ratio = min_area_ratio | |
def __call__(self, results): | |
for i in range(self.iter_num): | |
results = self.random_crop_flip(results) | |
return results | |
def random_crop_flip(self, results): | |
image = results["image"] | |
polygons = results["polys"] | |
ignore_tags = results["ignore_tags"] | |
if len(polygons) == 0: | |
return results | |
if np.random.random() >= self.crop_ratio: | |
return results | |
h, w, _ = image.shape | |
area = h * w | |
pad_h = int(h * self.pad_ratio) | |
pad_w = int(w * self.pad_ratio) | |
h_axis, w_axis = self.generate_crop_target(image, polygons, pad_h, pad_w) | |
if len(h_axis) == 0 or len(w_axis) == 0: | |
return results | |
attempt = 0 | |
while attempt < 50: | |
attempt += 1 | |
polys_keep = [] | |
polys_new = [] | |
ignore_tags_keep = [] | |
ignore_tags_new = [] | |
xx = np.random.choice(w_axis, size=2) | |
xmin = np.min(xx) - pad_w | |
xmax = np.max(xx) - pad_w | |
xmin = np.clip(xmin, 0, w - 1) | |
xmax = np.clip(xmax, 0, w - 1) | |
yy = np.random.choice(h_axis, size=2) | |
ymin = np.min(yy) - pad_h | |
ymax = np.max(yy) - pad_h | |
ymin = np.clip(ymin, 0, h - 1) | |
ymax = np.clip(ymax, 0, h - 1) | |
if (xmax - xmin) * (ymax - ymin) < area * self.min_area_ratio: | |
# area too small | |
continue | |
pts = np.stack( | |
[[xmin, xmax, xmax, xmin], [ymin, ymin, ymax, ymax]] | |
).T.astype(np.int32) | |
pp = Polygon(pts) | |
fail_flag = False | |
for polygon, ignore_tag in zip(polygons, ignore_tags): | |
ppi = Polygon(polygon.reshape(-1, 2)) | |
ppiou, _ = poly_intersection(ppi, pp, buffer=0) | |
if ( | |
np.abs(ppiou - float(ppi.area)) > self.epsilon | |
and np.abs(ppiou) > self.epsilon | |
): | |
fail_flag = True | |
break | |
elif np.abs(ppiou - float(ppi.area)) < self.epsilon: | |
polys_new.append(polygon) | |
ignore_tags_new.append(ignore_tag) | |
else: | |
polys_keep.append(polygon) | |
ignore_tags_keep.append(ignore_tag) | |
if fail_flag: | |
continue | |
else: | |
break | |
cropped = image[ymin:ymax, xmin:xmax, :] | |
select_type = np.random.randint(3) | |
if select_type == 0: | |
img = np.ascontiguousarray(cropped[:, ::-1]) | |
elif select_type == 1: | |
img = np.ascontiguousarray(cropped[::-1, :]) | |
else: | |
img = np.ascontiguousarray(cropped[::-1, ::-1]) | |
image[ymin:ymax, xmin:xmax, :] = img | |
results["img"] = image | |
if len(polys_new) != 0: | |
height, width, _ = cropped.shape | |
if select_type == 0: | |
for idx, polygon in enumerate(polys_new): | |
poly = polygon.reshape(-1, 2) | |
poly[:, 0] = width - poly[:, 0] + 2 * xmin | |
polys_new[idx] = poly | |
elif select_type == 1: | |
for idx, polygon in enumerate(polys_new): | |
poly = polygon.reshape(-1, 2) | |
poly[:, 1] = height - poly[:, 1] + 2 * ymin | |
polys_new[idx] = poly | |
else: | |
for idx, polygon in enumerate(polys_new): | |
poly = polygon.reshape(-1, 2) | |
poly[:, 0] = width - poly[:, 0] + 2 * xmin | |
poly[:, 1] = height - poly[:, 1] + 2 * ymin | |
polys_new[idx] = poly | |
polygons = polys_keep + polys_new | |
ignore_tags = ignore_tags_keep + ignore_tags_new | |
results["polys"] = np.array(polygons) | |
results["ignore_tags"] = ignore_tags | |
return results | |
def generate_crop_target(self, image, all_polys, pad_h, pad_w): | |
"""Generate crop target and make sure not to crop the polygon | |
instances. | |
Args: | |
image (ndarray): The image waited to be crop. | |
all_polys (list[list[ndarray]]): All polygons including ground | |
truth polygons and ground truth ignored polygons. | |
pad_h (int): Padding length of height. | |
pad_w (int): Padding length of width. | |
Returns: | |
h_axis (ndarray): Vertical cropping range. | |
w_axis (ndarray): Horizontal cropping range. | |
""" | |
h, w, _ = image.shape | |
h_array = np.zeros((h + pad_h * 2), dtype=np.int32) | |
w_array = np.zeros((w + pad_w * 2), dtype=np.int32) | |
text_polys = [] | |
for polygon in all_polys: | |
rect = cv2.minAreaRect(polygon.astype(np.int32).reshape(-1, 2)) | |
box = cv2.boxPoints(rect) | |
box = np.int0(box) | |
text_polys.append([box[0], box[1], box[2], box[3]]) | |
polys = np.array(text_polys, dtype=np.int32) | |
for poly in polys: | |
poly = np.round(poly, decimals=0).astype(np.int32) | |
minx = np.min(poly[:, 0]) | |
maxx = np.max(poly[:, 0]) | |
w_array[minx + pad_w : maxx + pad_w] = 1 | |
miny = np.min(poly[:, 1]) | |
maxy = np.max(poly[:, 1]) | |
h_array[miny + pad_h : maxy + pad_h] = 1 | |
h_axis = np.where(h_array == 0)[0] | |
w_axis = np.where(w_array == 0)[0] | |
return h_axis, w_axis | |
class RandomCropPolyInstances: | |
"""Randomly crop images and make sure to contain at least one intact | |
instance.""" | |
def __init__(self, crop_ratio=5.0 / 8.0, min_side_ratio=0.4, **kwargs): | |
super().__init__() | |
self.crop_ratio = crop_ratio | |
self.min_side_ratio = min_side_ratio | |
def sample_valid_start_end(self, valid_array, min_len, max_start, min_end): | |
assert isinstance(min_len, int) | |
assert len(valid_array) > min_len | |
start_array = valid_array.copy() | |
max_start = min(len(start_array) - min_len, max_start) | |
start_array[max_start:] = 0 | |
start_array[0] = 1 | |
diff_array = np.hstack([0, start_array]) - np.hstack([start_array, 0]) | |
region_starts = np.where(diff_array < 0)[0] | |
region_ends = np.where(diff_array > 0)[0] | |
region_ind = np.random.randint(0, len(region_starts)) | |
start = np.random.randint(region_starts[region_ind], region_ends[region_ind]) | |
end_array = valid_array.copy() | |
min_end = max(start + min_len, min_end) | |
end_array[:min_end] = 0 | |
end_array[-1] = 1 | |
diff_array = np.hstack([0, end_array]) - np.hstack([end_array, 0]) | |
region_starts = np.where(diff_array < 0)[0] | |
region_ends = np.where(diff_array > 0)[0] | |
region_ind = np.random.randint(0, len(region_starts)) | |
end = np.random.randint(region_starts[region_ind], region_ends[region_ind]) | |
return start, end | |
def sample_crop_box(self, img_size, results): | |
"""Generate crop box and make sure not to crop the polygon instances. | |
Args: | |
img_size (tuple(int)): The image size (h, w). | |
results (dict): The results dict. | |
""" | |
assert isinstance(img_size, tuple) | |
h, w = img_size[:2] | |
key_masks = results["polys"] | |
x_valid_array = np.ones(w, dtype=np.int32) | |
y_valid_array = np.ones(h, dtype=np.int32) | |
selected_mask = key_masks[np.random.randint(0, len(key_masks))] | |
selected_mask = selected_mask.reshape((-1, 2)).astype(np.int32) | |
max_x_start = max(np.min(selected_mask[:, 0]) - 2, 0) | |
min_x_end = min(np.max(selected_mask[:, 0]) + 3, w - 1) | |
max_y_start = max(np.min(selected_mask[:, 1]) - 2, 0) | |
min_y_end = min(np.max(selected_mask[:, 1]) + 3, h - 1) | |
for mask in key_masks: | |
mask = mask.reshape((-1, 2)).astype(np.int32) | |
clip_x = np.clip(mask[:, 0], 0, w - 1) | |
clip_y = np.clip(mask[:, 1], 0, h - 1) | |
min_x, max_x = np.min(clip_x), np.max(clip_x) | |
min_y, max_y = np.min(clip_y), np.max(clip_y) | |
x_valid_array[min_x - 2 : max_x + 3] = 0 | |
y_valid_array[min_y - 2 : max_y + 3] = 0 | |
min_w = int(w * self.min_side_ratio) | |
min_h = int(h * self.min_side_ratio) | |
x1, x2 = self.sample_valid_start_end( | |
x_valid_array, min_w, max_x_start, min_x_end | |
) | |
y1, y2 = self.sample_valid_start_end( | |
y_valid_array, min_h, max_y_start, min_y_end | |
) | |
return np.array([x1, y1, x2, y2]) | |
def crop_img(self, img, bbox): | |
assert img.ndim == 3 | |
h, w, _ = img.shape | |
assert 0 <= bbox[1] < bbox[3] <= h | |
assert 0 <= bbox[0] < bbox[2] <= w | |
return img[bbox[1] : bbox[3], bbox[0] : bbox[2]] | |
def __call__(self, results): | |
image = results["image"] | |
polygons = results["polys"] | |
ignore_tags = results["ignore_tags"] | |
if len(polygons) < 1: | |
return results | |
if np.random.random_sample() < self.crop_ratio: | |
crop_box = self.sample_crop_box(image.shape, results) | |
img = self.crop_img(image, crop_box) | |
results["image"] = img | |
# crop and filter masks | |
x1, y1, x2, y2 = crop_box | |
w = max(x2 - x1, 1) | |
h = max(y2 - y1, 1) | |
polygons[:, :, 0::2] = polygons[:, :, 0::2] - x1 | |
polygons[:, :, 1::2] = polygons[:, :, 1::2] - y1 | |
valid_masks_list = [] | |
valid_tags_list = [] | |
for ind, polygon in enumerate(polygons): | |
if ( | |
(polygon[:, ::2] > -4).all() | |
and (polygon[:, ::2] < w + 4).all() | |
and (polygon[:, 1::2] > -4).all() | |
and (polygon[:, 1::2] < h + 4).all() | |
): | |
polygon[:, ::2] = np.clip(polygon[:, ::2], 0, w) | |
polygon[:, 1::2] = np.clip(polygon[:, 1::2], 0, h) | |
valid_masks_list.append(polygon) | |
valid_tags_list.append(ignore_tags[ind]) | |
results["polys"] = np.array(valid_masks_list) | |
results["ignore_tags"] = valid_tags_list | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
return repr_str | |
class RandomRotatePolyInstances: | |
def __init__( | |
self, | |
rotate_ratio=0.5, | |
max_angle=10, | |
pad_with_fixed_color=False, | |
pad_value=(0, 0, 0), | |
**kwargs | |
): | |
"""Randomly rotate images and polygon masks. | |
Args: | |
rotate_ratio (float): The ratio of samples to operate rotation. | |
max_angle (int): The maximum rotation angle. | |
pad_with_fixed_color (bool): The flag for whether to pad rotated | |
image with fixed value. If set to False, the rotated image will | |
be padded onto cropped image. | |
pad_value (tuple(int)): The color value for padding rotated image. | |
""" | |
self.rotate_ratio = rotate_ratio | |
self.max_angle = max_angle | |
self.pad_with_fixed_color = pad_with_fixed_color | |
self.pad_value = pad_value | |
def rotate(self, center, points, theta, center_shift=(0, 0)): | |
# rotate points. | |
(center_x, center_y) = center | |
center_y = -center_y | |
x, y = points[:, ::2], points[:, 1::2] | |
y = -y | |
theta = theta / 180 * math.pi | |
cos = math.cos(theta) | |
sin = math.sin(theta) | |
x = x - center_x | |
y = y - center_y | |
_x = center_x + x * cos - y * sin + center_shift[0] | |
_y = -(center_y + x * sin + y * cos) + center_shift[1] | |
points[:, ::2], points[:, 1::2] = _x, _y | |
return points | |
def cal_canvas_size(self, ori_size, degree): | |
assert isinstance(ori_size, tuple) | |
angle = degree * math.pi / 180.0 | |
h, w = ori_size[:2] | |
cos = math.cos(angle) | |
sin = math.sin(angle) | |
canvas_h = int(w * math.fabs(sin) + h * math.fabs(cos)) | |
canvas_w = int(w * math.fabs(cos) + h * math.fabs(sin)) | |
canvas_size = (canvas_h, canvas_w) | |
return canvas_size | |
def sample_angle(self, max_angle): | |
angle = np.random.random_sample() * 2 * max_angle - max_angle | |
return angle | |
def rotate_img(self, img, angle, canvas_size): | |
h, w = img.shape[:2] | |
rotation_matrix = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1) | |
rotation_matrix[0, 2] += int((canvas_size[1] - w) / 2) | |
rotation_matrix[1, 2] += int((canvas_size[0] - h) / 2) | |
if self.pad_with_fixed_color: | |
target_img = cv2.warpAffine( | |
img, | |
rotation_matrix, | |
(canvas_size[1], canvas_size[0]), | |
flags=cv2.INTER_NEAREST, | |
borderValue=self.pad_value, | |
) | |
else: | |
mask = np.zeros_like(img) | |
(h_ind, w_ind) = ( | |
np.random.randint(0, h * 7 // 8), | |
np.random.randint(0, w * 7 // 8), | |
) | |
img_cut = img[h_ind : (h_ind + h // 9), w_ind : (w_ind + w // 9)] | |
img_cut = cv2.resize(img_cut, (canvas_size[1], canvas_size[0])) | |
mask = cv2.warpAffine( | |
mask, | |
rotation_matrix, | |
(canvas_size[1], canvas_size[0]), | |
borderValue=[1, 1, 1], | |
) | |
target_img = cv2.warpAffine( | |
img, | |
rotation_matrix, | |
(canvas_size[1], canvas_size[0]), | |
borderValue=[0, 0, 0], | |
) | |
target_img = target_img + img_cut * mask | |
return target_img | |
def __call__(self, results): | |
if np.random.random_sample() < self.rotate_ratio: | |
image = results["image"] | |
polygons = results["polys"] | |
h, w = image.shape[:2] | |
angle = self.sample_angle(self.max_angle) | |
canvas_size = self.cal_canvas_size((h, w), angle) | |
center_shift = ( | |
int((canvas_size[1] - w) / 2), | |
int((canvas_size[0] - h) / 2), | |
) | |
image = self.rotate_img(image, angle, canvas_size) | |
results["image"] = image | |
# rotate polygons | |
rotated_masks = [] | |
for mask in polygons: | |
rotated_mask = self.rotate((w / 2, h / 2), mask, angle, center_shift) | |
rotated_masks.append(rotated_mask) | |
results["polys"] = np.array(rotated_masks) | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
return repr_str | |
class SquareResizePad: | |
def __init__( | |
self, | |
target_size, | |
pad_ratio=0.6, | |
pad_with_fixed_color=False, | |
pad_value=(0, 0, 0), | |
**kwargs | |
): | |
"""Resize or pad images to be square shape. | |
Args: | |
target_size (int): The target size of square shaped image. | |
pad_with_fixed_color (bool): The flag for whether to pad rotated | |
image with fixed value. If set to False, the rescales image will | |
be padded onto cropped image. | |
pad_value (tuple(int)): The color value for padding rotated image. | |
""" | |
assert isinstance(target_size, int) | |
assert isinstance(pad_ratio, float) | |
assert isinstance(pad_with_fixed_color, bool) | |
assert isinstance(pad_value, tuple) | |
self.target_size = target_size | |
self.pad_ratio = pad_ratio | |
self.pad_with_fixed_color = pad_with_fixed_color | |
self.pad_value = pad_value | |
def resize_img(self, img, keep_ratio=True): | |
h, w, _ = img.shape | |
if keep_ratio: | |
t_h = self.target_size if h >= w else int(h * self.target_size / w) | |
t_w = self.target_size if h <= w else int(w * self.target_size / h) | |
else: | |
t_h = t_w = self.target_size | |
img = cv2.resize(img, (t_w, t_h)) | |
return img, (t_h, t_w) | |
def square_pad(self, img): | |
h, w = img.shape[:2] | |
if h == w: | |
return img, (0, 0) | |
pad_size = max(h, w) | |
if self.pad_with_fixed_color: | |
expand_img = np.ones((pad_size, pad_size, 3), dtype=np.uint8) | |
expand_img[:] = self.pad_value | |
else: | |
(h_ind, w_ind) = ( | |
np.random.randint(0, h * 7 // 8), | |
np.random.randint(0, w * 7 // 8), | |
) | |
img_cut = img[h_ind : (h_ind + h // 9), w_ind : (w_ind + w // 9)] | |
expand_img = cv2.resize(img_cut, (pad_size, pad_size)) | |
if h > w: | |
y0, x0 = 0, (h - w) // 2 | |
else: | |
y0, x0 = (w - h) // 2, 0 | |
expand_img[y0 : y0 + h, x0 : x0 + w] = img | |
offset = (x0, y0) | |
return expand_img, offset | |
def square_pad_mask(self, points, offset): | |
x0, y0 = offset | |
pad_points = points.copy() | |
pad_points[::2] = pad_points[::2] + x0 | |
pad_points[1::2] = pad_points[1::2] + y0 | |
return pad_points | |
def __call__(self, results): | |
image = results["image"] | |
polygons = results["polys"] | |
h, w = image.shape[:2] | |
if np.random.random_sample() < self.pad_ratio: | |
image, out_size = self.resize_img(image, keep_ratio=True) | |
image, offset = self.square_pad(image) | |
else: | |
image, out_size = self.resize_img(image, keep_ratio=False) | |
offset = (0, 0) | |
results["image"] = image | |
try: | |
polygons[:, :, 0::2] = polygons[:, :, 0::2] * out_size[1] / w + offset[0] | |
polygons[:, :, 1::2] = polygons[:, :, 1::2] * out_size[0] / h + offset[1] | |
except: | |
pass | |
results["polys"] = polygons | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
return repr_str | |