File size: 20,045 Bytes
5b765fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import math
import os

import cv2
import numpy as np
from PIL import Image, ImageDraw
from shapely.geometry import Polygon

from postprocess.poly_nms import poly_intersection


class RandomScaling:
    def __init__(self, size=800, scale=(3.0 / 4, 5.0 / 2), **kwargs):
        """Random scale the image while keeping aspect.

        Args:
            size (int) : Base size before scaling.
            scale (tuple(float)) : The range of scaling.
        """
        assert isinstance(size, int)
        assert isinstance(scale, float) or isinstance(scale, tuple)
        self.size = size
        self.scale = scale if isinstance(scale, tuple) else (1 - scale, 1 + scale)

    def __call__(self, data):
        image = data["image"]
        text_polys = data["polys"]
        h, w, _ = image.shape

        aspect_ratio = np.random.uniform(min(self.scale), max(self.scale))
        scales = self.size * 1.0 / max(h, w) * aspect_ratio
        scales = np.array([scales, scales])
        out_size = (int(h * scales[1]), int(w * scales[0]))
        image = cv2.resize(image, out_size[::-1])

        data["image"] = image
        text_polys[:, :, 0::2] = text_polys[:, :, 0::2] * scales[1]
        text_polys[:, :, 1::2] = text_polys[:, :, 1::2] * scales[0]
        data["polys"] = text_polys

        return data


class RandomCropFlip:
    def __init__(
        self, pad_ratio=0.1, crop_ratio=0.5, iter_num=1, min_area_ratio=0.2, **kwargs
    ):
        """Random crop and flip a patch of the image.

        Args:
            crop_ratio (float): The ratio of cropping.
            iter_num (int): Number of operations.
            min_area_ratio (float): Minimal area ratio between cropped patch
                and original image.
        """
        assert isinstance(crop_ratio, float)
        assert isinstance(iter_num, int)
        assert isinstance(min_area_ratio, float)

        self.pad_ratio = pad_ratio
        self.epsilon = 1e-2
        self.crop_ratio = crop_ratio
        self.iter_num = iter_num
        self.min_area_ratio = min_area_ratio

    def __call__(self, results):
        for i in range(self.iter_num):
            results = self.random_crop_flip(results)

        return results

    def random_crop_flip(self, results):
        image = results["image"]
        polygons = results["polys"]
        ignore_tags = results["ignore_tags"]
        if len(polygons) == 0:
            return results

        if np.random.random() >= self.crop_ratio:
            return results

        h, w, _ = image.shape
        area = h * w
        pad_h = int(h * self.pad_ratio)
        pad_w = int(w * self.pad_ratio)
        h_axis, w_axis = self.generate_crop_target(image, polygons, pad_h, pad_w)
        if len(h_axis) == 0 or len(w_axis) == 0:
            return results

        attempt = 0
        while attempt < 50:
            attempt += 1
            polys_keep = []
            polys_new = []
            ignore_tags_keep = []
            ignore_tags_new = []
            xx = np.random.choice(w_axis, size=2)
            xmin = np.min(xx) - pad_w
            xmax = np.max(xx) - pad_w
            xmin = np.clip(xmin, 0, w - 1)
            xmax = np.clip(xmax, 0, w - 1)
            yy = np.random.choice(h_axis, size=2)
            ymin = np.min(yy) - pad_h
            ymax = np.max(yy) - pad_h
            ymin = np.clip(ymin, 0, h - 1)
            ymax = np.clip(ymax, 0, h - 1)
            if (xmax - xmin) * (ymax - ymin) < area * self.min_area_ratio:
                # area too small
                continue

            pts = np.stack(
                [[xmin, xmax, xmax, xmin], [ymin, ymin, ymax, ymax]]
            ).T.astype(np.int32)
            pp = Polygon(pts)
            fail_flag = False
            for polygon, ignore_tag in zip(polygons, ignore_tags):
                ppi = Polygon(polygon.reshape(-1, 2))
                ppiou, _ = poly_intersection(ppi, pp, buffer=0)
                if (
                    np.abs(ppiou - float(ppi.area)) > self.epsilon
                    and np.abs(ppiou) > self.epsilon
                ):
                    fail_flag = True
                    break
                elif np.abs(ppiou - float(ppi.area)) < self.epsilon:
                    polys_new.append(polygon)
                    ignore_tags_new.append(ignore_tag)
                else:
                    polys_keep.append(polygon)
                    ignore_tags_keep.append(ignore_tag)

            if fail_flag:
                continue
            else:
                break

        cropped = image[ymin:ymax, xmin:xmax, :]
        select_type = np.random.randint(3)
        if select_type == 0:
            img = np.ascontiguousarray(cropped[:, ::-1])
        elif select_type == 1:
            img = np.ascontiguousarray(cropped[::-1, :])
        else:
            img = np.ascontiguousarray(cropped[::-1, ::-1])
        image[ymin:ymax, xmin:xmax, :] = img
        results["img"] = image

        if len(polys_new) != 0:
            height, width, _ = cropped.shape
            if select_type == 0:
                for idx, polygon in enumerate(polys_new):
                    poly = polygon.reshape(-1, 2)
                    poly[:, 0] = width - poly[:, 0] + 2 * xmin
                    polys_new[idx] = poly
            elif select_type == 1:
                for idx, polygon in enumerate(polys_new):
                    poly = polygon.reshape(-1, 2)
                    poly[:, 1] = height - poly[:, 1] + 2 * ymin
                    polys_new[idx] = poly
            else:
                for idx, polygon in enumerate(polys_new):
                    poly = polygon.reshape(-1, 2)
                    poly[:, 0] = width - poly[:, 0] + 2 * xmin
                    poly[:, 1] = height - poly[:, 1] + 2 * ymin
                    polys_new[idx] = poly
            polygons = polys_keep + polys_new
            ignore_tags = ignore_tags_keep + ignore_tags_new
            results["polys"] = np.array(polygons)
            results["ignore_tags"] = ignore_tags

        return results

    def generate_crop_target(self, image, all_polys, pad_h, pad_w):
        """Generate crop target and make sure not to crop the polygon
        instances.

        Args:
            image (ndarray): The image waited to be crop.
            all_polys (list[list[ndarray]]): All polygons including ground
                truth polygons and ground truth ignored polygons.
            pad_h (int): Padding length of height.
            pad_w (int): Padding length of width.
        Returns:
            h_axis (ndarray): Vertical cropping range.
            w_axis (ndarray): Horizontal cropping range.
        """
        h, w, _ = image.shape
        h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
        w_array = np.zeros((w + pad_w * 2), dtype=np.int32)

        text_polys = []
        for polygon in all_polys:
            rect = cv2.minAreaRect(polygon.astype(np.int32).reshape(-1, 2))
            box = cv2.boxPoints(rect)
            box = np.int0(box)
            text_polys.append([box[0], box[1], box[2], box[3]])

        polys = np.array(text_polys, dtype=np.int32)
        for poly in polys:
            poly = np.round(poly, decimals=0).astype(np.int32)
            minx = np.min(poly[:, 0])
            maxx = np.max(poly[:, 0])
            w_array[minx + pad_w : maxx + pad_w] = 1
            miny = np.min(poly[:, 1])
            maxy = np.max(poly[:, 1])
            h_array[miny + pad_h : maxy + pad_h] = 1

        h_axis = np.where(h_array == 0)[0]
        w_axis = np.where(w_array == 0)[0]
        return h_axis, w_axis


class RandomCropPolyInstances:
    """Randomly crop images and make sure to contain at least one intact
    instance."""

    def __init__(self, crop_ratio=5.0 / 8.0, min_side_ratio=0.4, **kwargs):
        super().__init__()
        self.crop_ratio = crop_ratio
        self.min_side_ratio = min_side_ratio

    def sample_valid_start_end(self, valid_array, min_len, max_start, min_end):

        assert isinstance(min_len, int)
        assert len(valid_array) > min_len

        start_array = valid_array.copy()
        max_start = min(len(start_array) - min_len, max_start)
        start_array[max_start:] = 0
        start_array[0] = 1
        diff_array = np.hstack([0, start_array]) - np.hstack([start_array, 0])
        region_starts = np.where(diff_array < 0)[0]
        region_ends = np.where(diff_array > 0)[0]
        region_ind = np.random.randint(0, len(region_starts))
        start = np.random.randint(region_starts[region_ind], region_ends[region_ind])

        end_array = valid_array.copy()
        min_end = max(start + min_len, min_end)
        end_array[:min_end] = 0
        end_array[-1] = 1
        diff_array = np.hstack([0, end_array]) - np.hstack([end_array, 0])
        region_starts = np.where(diff_array < 0)[0]
        region_ends = np.where(diff_array > 0)[0]
        region_ind = np.random.randint(0, len(region_starts))
        end = np.random.randint(region_starts[region_ind], region_ends[region_ind])
        return start, end

    def sample_crop_box(self, img_size, results):
        """Generate crop box and make sure not to crop the polygon instances.

        Args:
            img_size (tuple(int)): The image size (h, w).
            results (dict): The results dict.
        """

        assert isinstance(img_size, tuple)
        h, w = img_size[:2]

        key_masks = results["polys"]

        x_valid_array = np.ones(w, dtype=np.int32)
        y_valid_array = np.ones(h, dtype=np.int32)

        selected_mask = key_masks[np.random.randint(0, len(key_masks))]
        selected_mask = selected_mask.reshape((-1, 2)).astype(np.int32)
        max_x_start = max(np.min(selected_mask[:, 0]) - 2, 0)
        min_x_end = min(np.max(selected_mask[:, 0]) + 3, w - 1)
        max_y_start = max(np.min(selected_mask[:, 1]) - 2, 0)
        min_y_end = min(np.max(selected_mask[:, 1]) + 3, h - 1)

        for mask in key_masks:
            mask = mask.reshape((-1, 2)).astype(np.int32)
            clip_x = np.clip(mask[:, 0], 0, w - 1)
            clip_y = np.clip(mask[:, 1], 0, h - 1)
            min_x, max_x = np.min(clip_x), np.max(clip_x)
            min_y, max_y = np.min(clip_y), np.max(clip_y)

            x_valid_array[min_x - 2 : max_x + 3] = 0
            y_valid_array[min_y - 2 : max_y + 3] = 0

        min_w = int(w * self.min_side_ratio)
        min_h = int(h * self.min_side_ratio)

        x1, x2 = self.sample_valid_start_end(
            x_valid_array, min_w, max_x_start, min_x_end
        )
        y1, y2 = self.sample_valid_start_end(
            y_valid_array, min_h, max_y_start, min_y_end
        )

        return np.array([x1, y1, x2, y2])

    def crop_img(self, img, bbox):
        assert img.ndim == 3
        h, w, _ = img.shape
        assert 0 <= bbox[1] < bbox[3] <= h
        assert 0 <= bbox[0] < bbox[2] <= w
        return img[bbox[1] : bbox[3], bbox[0] : bbox[2]]

    def __call__(self, results):
        image = results["image"]
        polygons = results["polys"]
        ignore_tags = results["ignore_tags"]
        if len(polygons) < 1:
            return results

        if np.random.random_sample() < self.crop_ratio:

            crop_box = self.sample_crop_box(image.shape, results)
            img = self.crop_img(image, crop_box)
            results["image"] = img
            # crop and filter masks
            x1, y1, x2, y2 = crop_box
            w = max(x2 - x1, 1)
            h = max(y2 - y1, 1)
            polygons[:, :, 0::2] = polygons[:, :, 0::2] - x1
            polygons[:, :, 1::2] = polygons[:, :, 1::2] - y1

            valid_masks_list = []
            valid_tags_list = []
            for ind, polygon in enumerate(polygons):
                if (
                    (polygon[:, ::2] > -4).all()
                    and (polygon[:, ::2] < w + 4).all()
                    and (polygon[:, 1::2] > -4).all()
                    and (polygon[:, 1::2] < h + 4).all()
                ):
                    polygon[:, ::2] = np.clip(polygon[:, ::2], 0, w)
                    polygon[:, 1::2] = np.clip(polygon[:, 1::2], 0, h)
                    valid_masks_list.append(polygon)
                    valid_tags_list.append(ignore_tags[ind])

            results["polys"] = np.array(valid_masks_list)
            results["ignore_tags"] = valid_tags_list

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str


class RandomRotatePolyInstances:
    def __init__(
        self,
        rotate_ratio=0.5,
        max_angle=10,
        pad_with_fixed_color=False,
        pad_value=(0, 0, 0),
        **kwargs
    ):
        """Randomly rotate images and polygon masks.

        Args:
            rotate_ratio (float): The ratio of samples to operate rotation.
            max_angle (int): The maximum rotation angle.
            pad_with_fixed_color (bool): The flag for whether to pad rotated
               image with fixed value. If set to False, the rotated image will
               be padded onto cropped image.
            pad_value (tuple(int)): The color value for padding rotated image.
        """
        self.rotate_ratio = rotate_ratio
        self.max_angle = max_angle
        self.pad_with_fixed_color = pad_with_fixed_color
        self.pad_value = pad_value

    def rotate(self, center, points, theta, center_shift=(0, 0)):
        # rotate points.
        (center_x, center_y) = center
        center_y = -center_y
        x, y = points[:, ::2], points[:, 1::2]
        y = -y

        theta = theta / 180 * math.pi
        cos = math.cos(theta)
        sin = math.sin(theta)

        x = x - center_x
        y = y - center_y

        _x = center_x + x * cos - y * sin + center_shift[0]
        _y = -(center_y + x * sin + y * cos) + center_shift[1]

        points[:, ::2], points[:, 1::2] = _x, _y
        return points

    def cal_canvas_size(self, ori_size, degree):
        assert isinstance(ori_size, tuple)
        angle = degree * math.pi / 180.0
        h, w = ori_size[:2]

        cos = math.cos(angle)
        sin = math.sin(angle)
        canvas_h = int(w * math.fabs(sin) + h * math.fabs(cos))
        canvas_w = int(w * math.fabs(cos) + h * math.fabs(sin))

        canvas_size = (canvas_h, canvas_w)
        return canvas_size

    def sample_angle(self, max_angle):
        angle = np.random.random_sample() * 2 * max_angle - max_angle
        return angle

    def rotate_img(self, img, angle, canvas_size):
        h, w = img.shape[:2]
        rotation_matrix = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1)
        rotation_matrix[0, 2] += int((canvas_size[1] - w) / 2)
        rotation_matrix[1, 2] += int((canvas_size[0] - h) / 2)

        if self.pad_with_fixed_color:
            target_img = cv2.warpAffine(
                img,
                rotation_matrix,
                (canvas_size[1], canvas_size[0]),
                flags=cv2.INTER_NEAREST,
                borderValue=self.pad_value,
            )
        else:
            mask = np.zeros_like(img)
            (h_ind, w_ind) = (
                np.random.randint(0, h * 7 // 8),
                np.random.randint(0, w * 7 // 8),
            )
            img_cut = img[h_ind : (h_ind + h // 9), w_ind : (w_ind + w // 9)]
            img_cut = cv2.resize(img_cut, (canvas_size[1], canvas_size[0]))

            mask = cv2.warpAffine(
                mask,
                rotation_matrix,
                (canvas_size[1], canvas_size[0]),
                borderValue=[1, 1, 1],
            )
            target_img = cv2.warpAffine(
                img,
                rotation_matrix,
                (canvas_size[1], canvas_size[0]),
                borderValue=[0, 0, 0],
            )
            target_img = target_img + img_cut * mask

        return target_img

    def __call__(self, results):
        if np.random.random_sample() < self.rotate_ratio:
            image = results["image"]
            polygons = results["polys"]
            h, w = image.shape[:2]

            angle = self.sample_angle(self.max_angle)
            canvas_size = self.cal_canvas_size((h, w), angle)
            center_shift = (
                int((canvas_size[1] - w) / 2),
                int((canvas_size[0] - h) / 2),
            )
            image = self.rotate_img(image, angle, canvas_size)
            results["image"] = image
            # rotate polygons
            rotated_masks = []
            for mask in polygons:
                rotated_mask = self.rotate((w / 2, h / 2), mask, angle, center_shift)
                rotated_masks.append(rotated_mask)
            results["polys"] = np.array(rotated_masks)

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str


class SquareResizePad:
    def __init__(
        self,
        target_size,
        pad_ratio=0.6,
        pad_with_fixed_color=False,
        pad_value=(0, 0, 0),
        **kwargs
    ):
        """Resize or pad images to be square shape.

        Args:
            target_size (int): The target size of square shaped image.
            pad_with_fixed_color (bool): The flag for whether to pad rotated
               image with fixed value. If set to False, the rescales image will
               be padded onto cropped image.
            pad_value (tuple(int)): The color value for padding rotated image.
        """
        assert isinstance(target_size, int)
        assert isinstance(pad_ratio, float)
        assert isinstance(pad_with_fixed_color, bool)
        assert isinstance(pad_value, tuple)

        self.target_size = target_size
        self.pad_ratio = pad_ratio
        self.pad_with_fixed_color = pad_with_fixed_color
        self.pad_value = pad_value

    def resize_img(self, img, keep_ratio=True):
        h, w, _ = img.shape
        if keep_ratio:
            t_h = self.target_size if h >= w else int(h * self.target_size / w)
            t_w = self.target_size if h <= w else int(w * self.target_size / h)
        else:
            t_h = t_w = self.target_size
        img = cv2.resize(img, (t_w, t_h))
        return img, (t_h, t_w)

    def square_pad(self, img):
        h, w = img.shape[:2]
        if h == w:
            return img, (0, 0)
        pad_size = max(h, w)
        if self.pad_with_fixed_color:
            expand_img = np.ones((pad_size, pad_size, 3), dtype=np.uint8)
            expand_img[:] = self.pad_value
        else:
            (h_ind, w_ind) = (
                np.random.randint(0, h * 7 // 8),
                np.random.randint(0, w * 7 // 8),
            )
            img_cut = img[h_ind : (h_ind + h // 9), w_ind : (w_ind + w // 9)]
            expand_img = cv2.resize(img_cut, (pad_size, pad_size))
        if h > w:
            y0, x0 = 0, (h - w) // 2
        else:
            y0, x0 = (w - h) // 2, 0
        expand_img[y0 : y0 + h, x0 : x0 + w] = img
        offset = (x0, y0)

        return expand_img, offset

    def square_pad_mask(self, points, offset):
        x0, y0 = offset
        pad_points = points.copy()
        pad_points[::2] = pad_points[::2] + x0
        pad_points[1::2] = pad_points[1::2] + y0
        return pad_points

    def __call__(self, results):
        image = results["image"]
        polygons = results["polys"]
        h, w = image.shape[:2]

        if np.random.random_sample() < self.pad_ratio:
            image, out_size = self.resize_img(image, keep_ratio=True)
            image, offset = self.square_pad(image)
        else:
            image, out_size = self.resize_img(image, keep_ratio=False)
            offset = (0, 0)
        results["image"] = image
        try:
            polygons[:, :, 0::2] = polygons[:, :, 0::2] * out_size[1] / w + offset[0]
            polygons[:, :, 1::2] = polygons[:, :, 1::2] * out_size[0] / h + offset[1]
        except:
            pass
        results["polys"] = polygons

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str