Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Загрузка токенизатора и модели | |
model_name = "GoidaAlignment/GOIDA-0.5B" # Укажите путь к вашей модели | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
def generate_response(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True) | |
outputs = model.generate(inputs["input_ids"], max_length=200, num_return_sequences=1) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Интерфейс Gradio | |
with gr.Blocks() as demo: | |
gr.Markdown("# Введите запрос, и модель ответит.") | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox(label="Ваш запрос", lines=4, placeholder="Введите текст") | |
with gr.Column(): | |
output = gr.Textbox(label="Ответ модели", lines=6, interactive=False) | |
submit_button = gr.Button("Сгенерировать") | |
submit_button.click(generate_response, inputs=prompt_input, outputs=output) | |
# Запуск приложения | |
if __name__ == "__main__": | |
demo.launch() | |