Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,142 +1,30 @@
|
|
1 |
-
import os
|
2 |
-
import time
|
3 |
-
#import spaces
|
4 |
-
import torch
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
import gradio as gr
|
7 |
-
from
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
device = "cpu" # for GPU usage or "cpu" for CPU usage
|
24 |
-
|
25 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_LIST[0])
|
26 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_LIST[0]).to(device)
|
27 |
-
|
28 |
-
|
29 |
-
#@spaces.GPU()
|
30 |
-
def stream_chat(
|
31 |
-
message: str,
|
32 |
-
history: list,
|
33 |
-
temperature: float = 0.4,
|
34 |
-
max_new_tokens: int = 1024,
|
35 |
-
top_p: float = 1.0,
|
36 |
-
top_k: int = 20,
|
37 |
-
penalty: float = 1.2,
|
38 |
-
choice: str = "GoidaAlignment/GOIDA-0.5B"
|
39 |
-
):
|
40 |
-
print(f'message: {message}')
|
41 |
-
print(f'history: {history}')
|
42 |
-
|
43 |
-
conversation = []
|
44 |
-
for prompt, answer in history:
|
45 |
-
conversation.extend([
|
46 |
-
{"role": "user", "content": prompt},
|
47 |
-
{"role": "assistant", "content": answer},
|
48 |
-
])
|
49 |
-
|
50 |
-
conversation.append({"role": "user", "content": message})
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
max_new_tokens = max_new_tokens,
|
61 |
-
do_sample = False if temperature == 0 else True,
|
62 |
-
top_p = top_p,
|
63 |
-
top_k = top_k,
|
64 |
-
temperature = temperature,
|
65 |
-
streamer=streamer,
|
66 |
-
)
|
67 |
-
|
68 |
-
with torch.no_grad():
|
69 |
-
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
70 |
-
thread.start()
|
71 |
-
|
72 |
-
buffer = ""
|
73 |
-
for new_text in streamer:
|
74 |
-
buffer += new_text
|
75 |
-
yield buffer
|
76 |
-
|
77 |
-
|
78 |
-
#print(tokenizer.decode(outputs[0]))
|
79 |
-
|
80 |
-
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
81 |
-
|
82 |
-
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
83 |
-
gr.HTML(TITLE)
|
84 |
-
gr.ChatInterface(
|
85 |
-
fn=stream_chat,
|
86 |
-
chatbot=chatbot,
|
87 |
-
fill_height=True,
|
88 |
-
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
89 |
-
additional_inputs=[
|
90 |
-
gr.Slider(
|
91 |
-
minimum=0,
|
92 |
-
maximum=1,
|
93 |
-
step=0.1,
|
94 |
-
value=0.4,
|
95 |
-
label="Temperature",
|
96 |
-
render=False,
|
97 |
-
),
|
98 |
-
gr.Slider(
|
99 |
-
minimum=128,
|
100 |
-
maximum=8192,
|
101 |
-
step=1,
|
102 |
-
value=1024,
|
103 |
-
label="Max new tokens",
|
104 |
-
render=False,
|
105 |
-
),
|
106 |
-
gr.Slider(
|
107 |
-
minimum=0.0,
|
108 |
-
maximum=1.0,
|
109 |
-
step=0.1,
|
110 |
-
value=1.0,
|
111 |
-
label="top_p",
|
112 |
-
render=False,
|
113 |
-
),
|
114 |
-
gr.Slider(
|
115 |
-
minimum=1,
|
116 |
-
maximum=20,
|
117 |
-
step=1,
|
118 |
-
value=20,
|
119 |
-
label="top_k",
|
120 |
-
render=False,
|
121 |
-
),
|
122 |
-
gr.Slider(
|
123 |
-
minimum=0.0,
|
124 |
-
maximum=2.0,
|
125 |
-
step=0.1,
|
126 |
-
value=1.2,
|
127 |
-
label="Repetition penalty",
|
128 |
-
render=False,
|
129 |
-
),
|
130 |
-
gr.Radio(
|
131 |
-
["GoidaAlignment/GOIDA-0.5B"],
|
132 |
-
value="494M",
|
133 |
-
label="Load Model",
|
134 |
-
render=False,
|
135 |
-
),
|
136 |
-
],
|
137 |
-
cache_examples=False,
|
138 |
-
)
|
139 |
-
|
140 |
|
|
|
141 |
if __name__ == "__main__":
|
142 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
# Загрузка токенизатора и модели
|
5 |
+
model_name = "GoidaAlignment/GOIDA-0.5B" # Укажите путь к вашей модели
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
def generate_response(prompt):
|
10 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
11 |
+
outputs = model.generate(inputs["input_ids"], max_length=200, num_return_sequences=1)
|
12 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
13 |
+
return response
|
14 |
+
|
15 |
+
# Интерфейс Gradio
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
gr.Markdown("# Введите запрос, и модель ответит.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
with gr.Row():
|
20 |
+
with gr.Column():
|
21 |
+
prompt_input = gr.Textbox(label="Ваш запрос", lines=4, placeholder="Введите текст")
|
22 |
+
with gr.Column():
|
23 |
+
output = gr.Textbox(label="Ответ модели", lines=6, interactive=False)
|
24 |
|
25 |
+
submit_button = gr.Button("Сгенерировать")
|
26 |
+
submit_button.click(generate_response, inputs=prompt_input, outputs=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# Запуск приложения
|
29 |
if __name__ == "__main__":
|
30 |
+
demo.launch()
|