Spaces:
Sleeping
Sleeping
File size: 1,293 Bytes
3f0f80a af7afe0 52ccc5d af7afe0 52ccc5d af7afe0 3f0f80a af7afe0 3f0f80a af7afe0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Загрузка токенизатора и модели
model_name = "GoidaAlignment/GOIDA-0.5B" # Укажите путь к вашей модели
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
outputs = model.generate(inputs["input_ids"], max_length=200, num_return_sequences=1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Интерфейс Gradio
with gr.Blocks() as demo:
gr.Markdown("# Введите запрос, и модель ответит.")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Ваш запрос", lines=4, placeholder="Введите текст")
with gr.Column():
output = gr.Textbox(label="Ответ модели", lines=6, interactive=False)
submit_button = gr.Button("Сгенерировать")
submit_button.click(generate_response, inputs=prompt_input, outputs=output)
# Запуск приложения
if __name__ == "__main__":
demo.launch()
|