Spaces:
Runtime error
Runtime error
import torch | |
import streamlit as st | |
from transformers import BartTokenizer, BartForConditionalGeneration | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
st.title('Text Summarization Demo') | |
st.markdown('Using BART and T5 transformer model') | |
model = st.selectbox('Select the model', ('BART', 'T5')) | |
if model == 'BART': | |
_num_beams = 4 | |
_no_repeat_ngram_size = 3 | |
_length_penalty = 1 | |
_min_length = 12 | |
_max_length = 128 | |
_early_stopping = True | |
else: | |
_num_beams = 4 | |
_no_repeat_ngram_size = 3 | |
_length_penalty = 2 | |
_min_length = 30 | |
_max_length = 200 | |
_early_stopping = True | |
col1, col2, col3 = st.beta_columns(3) | |
_num_beams = col1.number_input("num_beams", value=_num_beams) | |
_no_repeat_ngram_size = col2.number_input("no_repeat_ngram_size", value=_no_repeat_ngram_size) | |
_length_penalty = col3.number_input("length_penalty", value=_length_penalty) | |
col1, col2, col3 = st.beta_columns(3) | |
_min_length = col1.number_input("min_length", value=_min_length) | |
_max_length = col2.number_input("max_length", value=_max_length) | |
_early_stopping = col3.number_input("early_stopping", value=_early_stopping) | |
text = st.text_area('Text Input') | |
def run_model(input_text): | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
if model == "BART": | |
bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-base") | |
bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-base") | |
input_text = str(input_text) | |
input_text = ' '.join(input_text.split()) | |
input_tokenized = bart_tokenizer.encode(input_text, return_tensors='pt').to(device) | |
summary_ids = bart_model.generate(input_tokenized, | |
num_beams=_num_beams, | |
no_repeat_ngram_size=_no_repeat_ngram_size, | |
length_penalty=_length_penalty, | |
min_length=_min_length, | |
max_length=_max_length, | |
early_stopping=_early_stopping) | |
output = [bart_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in | |
summary_ids] | |
st.write('Summary') | |
st.success(output[0]) | |
else: | |
t5_model = T5ForConditionalGeneration.from_pretrained("t5-base") | |
t5_tokenizer = T5Tokenizer.from_pretrained("t5-base") | |
input_text = str(input_text).replace('\n', '') | |
input_text = ' '.join(input_text.split()) | |
input_tokenized = t5_tokenizer.encode(input_text, return_tensors="pt").to(device) | |
summary_task = torch.tensor([[21603, 10]]).to(device) | |
input_tokenized = torch.cat([summary_task, input_tokenized], dim=-1).to(device) | |
summary_ids = t5_model.generate(input_tokenized, | |
num_beams=_num_beams, | |
no_repeat_ngram_size=_no_repeat_ngram_size, | |
length_penalty=_length_penalty, | |
min_length=_min_length, | |
max_length=_max_length, | |
early_stopping=_early_stopping) | |
output = [t5_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in | |
summary_ids] | |
st.write('Summary') | |
st.success(output[0]) | |
if st.button('Submit'): | |
run_model(text) |