import torch import streamlit as st from transformers import BartTokenizer, BartForConditionalGeneration from transformers import T5Tokenizer, T5ForConditionalGeneration st.title('Text Summarization Demo') st.markdown('Using BART and T5 transformer model') model = st.selectbox('Select the model', ('BART', 'T5')) if model == 'BART': _num_beams = 4 _no_repeat_ngram_size = 3 _length_penalty = 1 _min_length = 12 _max_length = 128 _early_stopping = True else: _num_beams = 4 _no_repeat_ngram_size = 3 _length_penalty = 2 _min_length = 30 _max_length = 200 _early_stopping = True col1, col2, col3 = st.beta_columns(3) _num_beams = col1.number_input("num_beams", value=_num_beams) _no_repeat_ngram_size = col2.number_input("no_repeat_ngram_size", value=_no_repeat_ngram_size) _length_penalty = col3.number_input("length_penalty", value=_length_penalty) col1, col2, col3 = st.beta_columns(3) _min_length = col1.number_input("min_length", value=_min_length) _max_length = col2.number_input("max_length", value=_max_length) _early_stopping = col3.number_input("early_stopping", value=_early_stopping) text = st.text_area('Text Input') def run_model(input_text): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if model == "BART": bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-base") bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-base") input_text = str(input_text) input_text = ' '.join(input_text.split()) input_tokenized = bart_tokenizer.encode(input_text, return_tensors='pt').to(device) summary_ids = bart_model.generate(input_tokenized, num_beams=_num_beams, no_repeat_ngram_size=_no_repeat_ngram_size, length_penalty=_length_penalty, min_length=_min_length, max_length=_max_length, early_stopping=_early_stopping) output = [bart_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids] st.write('Summary') st.success(output[0]) else: t5_model = T5ForConditionalGeneration.from_pretrained("t5-base") t5_tokenizer = T5Tokenizer.from_pretrained("t5-base") input_text = str(input_text).replace('\n', '') input_text = ' '.join(input_text.split()) input_tokenized = t5_tokenizer.encode(input_text, return_tensors="pt").to(device) summary_task = torch.tensor([[21603, 10]]).to(device) input_tokenized = torch.cat([summary_task, input_tokenized], dim=-1).to(device) summary_ids = t5_model.generate(input_tokenized, num_beams=_num_beams, no_repeat_ngram_size=_no_repeat_ngram_size, length_penalty=_length_penalty, min_length=_min_length, max_length=_max_length, early_stopping=_early_stopping) output = [t5_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids] st.write('Summary') st.success(output[0]) if st.button('Submit'): run_model(text)