Spaces:
Runtime error
Runtime error
File size: 15,689 Bytes
f4fa8f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
from math import acos, sin
from typing import Iterable, Tuple, Union, List
import torch
import numpy as np
from PIL import Image
from tqdm.auto import tqdm
from librosa.beat import beat_track
from diffusers import (DiffusionPipeline, UNet2DConditionModel, DDIMScheduler,
DDPMScheduler, AutoencoderKL)
from .mel import Mel
VERSION = "1.2.5"
class AudioDiffusion:
def __init__(self,
model_id: str = "teticio/audio-diffusion-256",
sample_rate: int = 22050,
n_fft: int = 2048,
hop_length: int = 512,
top_db: int = 80,
cuda: bool = torch.cuda.is_available(),
progress_bar: Iterable = tqdm):
"""Class for generating audio using De-noising Diffusion Probabilistic Models.
Args:
model_id (String): name of model (local directory or Hugging Face Hub)
sample_rate (int): sample rate of audio
n_fft (int): number of Fast Fourier Transforms
hop_length (int): hop length (a higher number is recommended for lower than 256 y_res)
top_db (int): loudest in decibels
cuda (bool): use CUDA?
progress_bar (iterable): iterable callback for progress updates or None
"""
self.model_id = model_id
pipeline = {
'LatentAudioDiffusionPipeline': LatentAudioDiffusionPipeline,
'AudioDiffusionPipeline': AudioDiffusionPipeline
}.get(
DiffusionPipeline.get_config_dict(self.model_id)['_class_name'],
AudioDiffusionPipeline)
self.pipe = pipeline.from_pretrained(self.model_id)
if cuda:
self.pipe.to("cuda")
self.progress_bar = progress_bar or (lambda _: _)
# For backwards compatibility
sample_size = (self.pipe.unet.sample_size,
self.pipe.unet.sample_size) if type(
self.pipe.unet.sample_size
) == int else self.pipe.unet.sample_size
self.mel = Mel(x_res=sample_size[1],
y_res=sample_size[0],
sample_rate=sample_rate,
n_fft=n_fft,
hop_length=hop_length,
top_db=top_db)
def generate_spectrogram_and_audio(
self,
steps: int = None,
generator: torch.Generator = None,
step_generator: torch.Generator = None,
eta: float = 0,
noise: torch.Tensor = None
) -> Tuple[Image.Image, Tuple[int, np.ndarray]]:
"""Generate random mel spectrogram and convert to audio.
Args:
steps (int): number of de-noising steps (defaults to 50 for DDIM, 1000 for DDPM)
generator (torch.Generator): random number generator or None
step_generator (torch.Generator): random number generator used to de-noise or None
eta (float): parameter between 0 and 1 used with DDIM scheduler
noise (torch.Tensor): noisy image or None
Returns:
PIL Image: mel spectrogram
(float, np.ndarray): sample rate and raw audio
"""
images, (sample_rate,
audios) = self.pipe(mel=self.mel,
batch_size=1,
steps=steps,
generator=generator,
step_generator=step_generator,
eta=eta,
noise=noise)
return images[0], (sample_rate, audios[0])
def generate_spectrogram_and_audio_from_audio(
self,
audio_file: str = None,
raw_audio: np.ndarray = None,
slice: int = 0,
start_step: int = 0,
steps: int = None,
generator: torch.Generator = None,
mask_start_secs: float = 0,
mask_end_secs: float = 0,
step_generator: torch.Generator = None,
eta: float = 0,
noise: torch.Tensor = None
) -> Tuple[Image.Image, Tuple[int, np.ndarray]]:
"""Generate random mel spectrogram from audio input and convert to audio.
Args:
audio_file (str): must be a file on disk due to Librosa limitation or
raw_audio (np.ndarray): audio as numpy array
slice (int): slice number of audio to convert
start_step (int): step to start from
steps (int): number of de-noising steps (defaults to 50 for DDIM, 1000 for DDPM)
generator (torch.Generator): random number generator or None
mask_start_secs (float): number of seconds of audio to mask (not generate) at start
mask_end_secs (float): number of seconds of audio to mask (not generate) at end
step_generator (torch.Generator): random number generator used to de-noise or None
eta (float): parameter between 0 and 1 used with DDIM scheduler
noise (torch.Tensor): noisy image or None
Returns:
PIL Image: mel spectrogram
(float, np.ndarray): sample rate and raw audio
"""
images, (sample_rate,
audios) = self.pipe(mel=self.mel,
batch_size=1,
audio_file=audio_file,
raw_audio=raw_audio,
slice=slice,
start_step=start_step,
steps=steps,
generator=generator,
mask_start_secs=mask_start_secs,
mask_end_secs=mask_end_secs,
step_generator=step_generator,
eta=eta,
noise=noise)
return images[0], (sample_rate, audios[0])
@staticmethod
def loop_it(audio: np.ndarray,
sample_rate: int,
loops: int = 12) -> np.ndarray:
"""Loop audio
Args:
audio (np.ndarray): audio as numpy array
sample_rate (int): sample rate of audio
loops (int): number of times to loop
Returns:
(float, np.ndarray): sample rate and raw audio or None
"""
_, beats = beat_track(y=audio, sr=sample_rate, units='samples')
for beats_in_bar in [16, 12, 8, 4]:
if len(beats) > beats_in_bar:
return np.tile(audio[beats[0]:beats[beats_in_bar]], loops)
return None
class AudioDiffusionPipeline(DiffusionPipeline):
def __init__(self, unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, DDPMScheduler]):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
mel: Mel,
batch_size: int = 1,
audio_file: str = None,
raw_audio: np.ndarray = None,
slice: int = 0,
start_step: int = 0,
steps: int = None,
generator: torch.Generator = None,
mask_start_secs: float = 0,
mask_end_secs: float = 0,
step_generator: torch.Generator = None,
eta: float = 0,
noise: torch.Tensor = None
) -> Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]]:
"""Generate random mel spectrogram from audio input and convert to audio.
Args:
mel (Mel): instance of Mel class to perform image <-> audio
batch_size (int): number of samples to generate
audio_file (str): must be a file on disk due to Librosa limitation or
raw_audio (np.ndarray): audio as numpy array
slice (int): slice number of audio to convert
start_step (int): step to start from
steps (int): number of de-noising steps (defaults to 50 for DDIM, 1000 for DDPM)
generator (torch.Generator): random number generator or None
mask_start_secs (float): number of seconds of audio to mask (not generate) at start
mask_end_secs (float): number of seconds of audio to mask (not generate) at end
step_generator (torch.Generator): random number generator used to de-noise or None
eta (float): parameter between 0 and 1 used with DDIM scheduler
noise (torch.Tensor): noise tensor of shape (batch_size, 1, height, width) or None
Returns:
List[PIL Image]: mel spectrograms
(float, List[np.ndarray]): sample rate and raw audios
"""
steps = steps or 50 if isinstance(self.scheduler,
DDIMScheduler) else 1000
self.scheduler.set_timesteps(steps)
step_generator = step_generator or generator
# For backwards compatibility
if type(self.unet.sample_size) == int:
self.unet.sample_size = (self.unet.sample_size,
self.unet.sample_size)
if noise is None:
noise = torch.randn(
(batch_size, self.unet.in_channels, self.unet.sample_size[0],
self.unet.sample_size[1]),
generator=generator)
images = noise
mask = None
if audio_file is not None or raw_audio is not None:
mel.load_audio(audio_file, raw_audio)
input_image = mel.audio_slice_to_image(slice)
input_image = np.frombuffer(input_image.tobytes(),
dtype="uint8").reshape(
(input_image.height,
input_image.width))
input_image = ((input_image / 255) * 2 - 1)
input_images = np.tile(input_image, (batch_size, 1, 1, 1))
if hasattr(self, 'vqvae'):
input_images = self.vqvae.encode(
input_images).latent_dist.sample(generator=generator)
input_images = 0.18215 * input_images
if start_step > 0:
images[0, 0] = self.scheduler.add_noise(
torch.tensor(input_images[:, np.newaxis, np.newaxis, :]),
noise, torch.tensor(steps - start_step))
pixels_per_second = (self.unet.sample_size[1] *
mel.get_sample_rate() / mel.x_res /
mel.hop_length)
mask_start = int(mask_start_secs * pixels_per_second)
mask_end = int(mask_end_secs * pixels_per_second)
mask = self.scheduler.add_noise(
torch.tensor(input_images[:, np.newaxis, :]), noise,
torch.tensor(self.scheduler.timesteps[start_step:]))
images = images.to(self.device)
for step, t in enumerate(
self.progress_bar(self.scheduler.timesteps[start_step:])):
model_output = self.unet(images, t)['sample']
if isinstance(self.scheduler, DDIMScheduler):
images = self.scheduler.step(
model_output=model_output,
timestep=t,
sample=images,
eta=eta,
generator=step_generator)['prev_sample']
else:
images = self.scheduler.step(
model_output=model_output,
timestep=t,
sample=images,
generator=step_generator)['prev_sample']
if mask is not None:
if mask_start > 0:
images[:, :, :, :mask_start] = mask[
step, :, :, :, :mask_start]
if mask_end > 0:
images[:, :, :, -mask_end:] = mask[step, :, :, :,
-mask_end:]
if hasattr(self, 'vqvae'):
# 0.18215 was scaling factor used in training to ensure unit variance
images = 1 / 0.18215 * images
images = self.vqvae.decode(images)['sample']
images = (images / 2 + 0.5).clamp(0, 1)
images = images.cpu().permute(0, 2, 3, 1).numpy()
images = (images * 255).round().astype("uint8")
images = list(
map(lambda _: Image.fromarray(_[:, :, 0]), images) if images.
shape[3] == 1 else map(
lambda _: Image.fromarray(_, mode='RGB').convert('L'), images))
audios = list(map(lambda _: mel.image_to_audio(_), images))
return images, (mel.get_sample_rate(), audios)
@torch.no_grad()
def encode(self, images: List[Image.Image], steps: int = 50) -> np.ndarray:
"""Reverse step process: recover noisy image from generated image.
Args:
images (List[PIL Image]): list of images to encode
steps (int): number of encoding steps to perform (defaults to 50)
Returns:
np.ndarray: noise tensor of shape (batch_size, 1, height, width)
"""
# Only works with DDIM as this method is deterministic
assert isinstance(self.scheduler, DDIMScheduler)
self.scheduler.set_timesteps(steps)
sample = np.array([
np.frombuffer(image.tobytes(), dtype="uint8").reshape(
(1, image.height, image.width)) for image in images
])
sample = ((sample / 255) * 2 - 1)
sample = torch.Tensor(sample).to(self.device)
for t in self.progress_bar(torch.flip(self.scheduler.timesteps,
(0, ))):
prev_timestep = (t - self.scheduler.num_train_timesteps //
self.scheduler.num_inference_steps)
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0 else
self.scheduler.final_alpha_cumprod)
beta_prod_t = 1 - alpha_prod_t
model_output = self.unet(sample, t)['sample']
pred_sample_direction = (1 -
alpha_prod_t_prev)**(0.5) * model_output
sample = (sample -
pred_sample_direction) * alpha_prod_t_prev**(-0.5)
sample = sample * alpha_prod_t**(0.5) + beta_prod_t**(
0.5) * model_output
return sample
@staticmethod
def slerp(x0: torch.Tensor, x1: torch.Tensor,
alpha: float) -> torch.Tensor:
"""Spherical Linear intERPolation
Args:
x0 (torch.Tensor): first tensor to interpolate between
x1 (torch.Tensor): seconds tensor to interpolate between
alpha (float): interpolation between 0 and 1
Returns:
torch.Tensor: interpolated tensor
"""
theta = acos(
torch.dot(torch.flatten(x0), torch.flatten(x1)) / torch.norm(x0) /
torch.norm(x1))
return sin((1 - alpha) * theta) * x0 / sin(theta) + sin(
alpha * theta) * x1 / sin(theta)
class LatentAudioDiffusionPipeline(AudioDiffusionPipeline):
def __init__(self, unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler,
DDPMScheduler], vqvae: AutoencoderKL):
super().__init__(unet=unet, scheduler=scheduler)
self.register_modules(vqvae=vqvae)
def __call__(self, *args, **kwargs):
return super().__call__(*args, **kwargs)
|