Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- audiodiffusion/__init__.py +369 -0
- audiodiffusion/mel.py +127 -0
- audiodiffusion/utils.py +342 -0
audiodiffusion/__init__.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import acos, sin
|
2 |
+
from typing import Iterable, Tuple, Union, List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
from tqdm.auto import tqdm
|
8 |
+
from librosa.beat import beat_track
|
9 |
+
from diffusers import (DiffusionPipeline, UNet2DConditionModel, DDIMScheduler,
|
10 |
+
DDPMScheduler, AutoencoderKL)
|
11 |
+
|
12 |
+
from .mel import Mel
|
13 |
+
|
14 |
+
VERSION = "1.2.5"
|
15 |
+
|
16 |
+
|
17 |
+
class AudioDiffusion:
|
18 |
+
|
19 |
+
def __init__(self,
|
20 |
+
model_id: str = "teticio/audio-diffusion-256",
|
21 |
+
sample_rate: int = 22050,
|
22 |
+
n_fft: int = 2048,
|
23 |
+
hop_length: int = 512,
|
24 |
+
top_db: int = 80,
|
25 |
+
cuda: bool = torch.cuda.is_available(),
|
26 |
+
progress_bar: Iterable = tqdm):
|
27 |
+
"""Class for generating audio using De-noising Diffusion Probabilistic Models.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
model_id (String): name of model (local directory or Hugging Face Hub)
|
31 |
+
sample_rate (int): sample rate of audio
|
32 |
+
n_fft (int): number of Fast Fourier Transforms
|
33 |
+
hop_length (int): hop length (a higher number is recommended for lower than 256 y_res)
|
34 |
+
top_db (int): loudest in decibels
|
35 |
+
cuda (bool): use CUDA?
|
36 |
+
progress_bar (iterable): iterable callback for progress updates or None
|
37 |
+
"""
|
38 |
+
self.model_id = model_id
|
39 |
+
pipeline = {
|
40 |
+
'LatentAudioDiffusionPipeline': LatentAudioDiffusionPipeline,
|
41 |
+
'AudioDiffusionPipeline': AudioDiffusionPipeline
|
42 |
+
}.get(
|
43 |
+
DiffusionPipeline.get_config_dict(self.model_id)['_class_name'],
|
44 |
+
AudioDiffusionPipeline)
|
45 |
+
self.pipe = pipeline.from_pretrained(self.model_id)
|
46 |
+
if cuda:
|
47 |
+
self.pipe.to("cuda")
|
48 |
+
self.progress_bar = progress_bar or (lambda _: _)
|
49 |
+
|
50 |
+
# For backwards compatibility
|
51 |
+
sample_size = (self.pipe.unet.sample_size,
|
52 |
+
self.pipe.unet.sample_size) if type(
|
53 |
+
self.pipe.unet.sample_size
|
54 |
+
) == int else self.pipe.unet.sample_size
|
55 |
+
self.mel = Mel(x_res=sample_size[1],
|
56 |
+
y_res=sample_size[0],
|
57 |
+
sample_rate=sample_rate,
|
58 |
+
n_fft=n_fft,
|
59 |
+
hop_length=hop_length,
|
60 |
+
top_db=top_db)
|
61 |
+
|
62 |
+
def generate_spectrogram_and_audio(
|
63 |
+
self,
|
64 |
+
steps: int = None,
|
65 |
+
generator: torch.Generator = None,
|
66 |
+
step_generator: torch.Generator = None,
|
67 |
+
eta: float = 0,
|
68 |
+
noise: torch.Tensor = None
|
69 |
+
) -> Tuple[Image.Image, Tuple[int, np.ndarray]]:
|
70 |
+
"""Generate random mel spectrogram and convert to audio.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
steps (int): number of de-noising steps (defaults to 50 for DDIM, 1000 for DDPM)
|
74 |
+
generator (torch.Generator): random number generator or None
|
75 |
+
step_generator (torch.Generator): random number generator used to de-noise or None
|
76 |
+
eta (float): parameter between 0 and 1 used with DDIM scheduler
|
77 |
+
noise (torch.Tensor): noisy image or None
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
PIL Image: mel spectrogram
|
81 |
+
(float, np.ndarray): sample rate and raw audio
|
82 |
+
"""
|
83 |
+
images, (sample_rate,
|
84 |
+
audios) = self.pipe(mel=self.mel,
|
85 |
+
batch_size=1,
|
86 |
+
steps=steps,
|
87 |
+
generator=generator,
|
88 |
+
step_generator=step_generator,
|
89 |
+
eta=eta,
|
90 |
+
noise=noise)
|
91 |
+
return images[0], (sample_rate, audios[0])
|
92 |
+
|
93 |
+
def generate_spectrogram_and_audio_from_audio(
|
94 |
+
self,
|
95 |
+
audio_file: str = None,
|
96 |
+
raw_audio: np.ndarray = None,
|
97 |
+
slice: int = 0,
|
98 |
+
start_step: int = 0,
|
99 |
+
steps: int = None,
|
100 |
+
generator: torch.Generator = None,
|
101 |
+
mask_start_secs: float = 0,
|
102 |
+
mask_end_secs: float = 0,
|
103 |
+
step_generator: torch.Generator = None,
|
104 |
+
eta: float = 0,
|
105 |
+
noise: torch.Tensor = None
|
106 |
+
) -> Tuple[Image.Image, Tuple[int, np.ndarray]]:
|
107 |
+
"""Generate random mel spectrogram from audio input and convert to audio.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
audio_file (str): must be a file on disk due to Librosa limitation or
|
111 |
+
raw_audio (np.ndarray): audio as numpy array
|
112 |
+
slice (int): slice number of audio to convert
|
113 |
+
start_step (int): step to start from
|
114 |
+
steps (int): number of de-noising steps (defaults to 50 for DDIM, 1000 for DDPM)
|
115 |
+
generator (torch.Generator): random number generator or None
|
116 |
+
mask_start_secs (float): number of seconds of audio to mask (not generate) at start
|
117 |
+
mask_end_secs (float): number of seconds of audio to mask (not generate) at end
|
118 |
+
step_generator (torch.Generator): random number generator used to de-noise or None
|
119 |
+
eta (float): parameter between 0 and 1 used with DDIM scheduler
|
120 |
+
noise (torch.Tensor): noisy image or None
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
PIL Image: mel spectrogram
|
124 |
+
(float, np.ndarray): sample rate and raw audio
|
125 |
+
"""
|
126 |
+
|
127 |
+
images, (sample_rate,
|
128 |
+
audios) = self.pipe(mel=self.mel,
|
129 |
+
batch_size=1,
|
130 |
+
audio_file=audio_file,
|
131 |
+
raw_audio=raw_audio,
|
132 |
+
slice=slice,
|
133 |
+
start_step=start_step,
|
134 |
+
steps=steps,
|
135 |
+
generator=generator,
|
136 |
+
mask_start_secs=mask_start_secs,
|
137 |
+
mask_end_secs=mask_end_secs,
|
138 |
+
step_generator=step_generator,
|
139 |
+
eta=eta,
|
140 |
+
noise=noise)
|
141 |
+
return images[0], (sample_rate, audios[0])
|
142 |
+
|
143 |
+
@staticmethod
|
144 |
+
def loop_it(audio: np.ndarray,
|
145 |
+
sample_rate: int,
|
146 |
+
loops: int = 12) -> np.ndarray:
|
147 |
+
"""Loop audio
|
148 |
+
|
149 |
+
Args:
|
150 |
+
audio (np.ndarray): audio as numpy array
|
151 |
+
sample_rate (int): sample rate of audio
|
152 |
+
loops (int): number of times to loop
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
(float, np.ndarray): sample rate and raw audio or None
|
156 |
+
"""
|
157 |
+
_, beats = beat_track(y=audio, sr=sample_rate, units='samples')
|
158 |
+
for beats_in_bar in [16, 12, 8, 4]:
|
159 |
+
if len(beats) > beats_in_bar:
|
160 |
+
return np.tile(audio[beats[0]:beats[beats_in_bar]], loops)
|
161 |
+
return None
|
162 |
+
|
163 |
+
|
164 |
+
class AudioDiffusionPipeline(DiffusionPipeline):
|
165 |
+
|
166 |
+
def __init__(self, unet: UNet2DConditionModel,
|
167 |
+
scheduler: Union[DDIMScheduler, DDPMScheduler]):
|
168 |
+
super().__init__()
|
169 |
+
self.register_modules(unet=unet, scheduler=scheduler)
|
170 |
+
|
171 |
+
@torch.no_grad()
|
172 |
+
def __call__(
|
173 |
+
self,
|
174 |
+
mel: Mel,
|
175 |
+
batch_size: int = 1,
|
176 |
+
audio_file: str = None,
|
177 |
+
raw_audio: np.ndarray = None,
|
178 |
+
slice: int = 0,
|
179 |
+
start_step: int = 0,
|
180 |
+
steps: int = None,
|
181 |
+
generator: torch.Generator = None,
|
182 |
+
mask_start_secs: float = 0,
|
183 |
+
mask_end_secs: float = 0,
|
184 |
+
step_generator: torch.Generator = None,
|
185 |
+
eta: float = 0,
|
186 |
+
noise: torch.Tensor = None
|
187 |
+
) -> Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]]:
|
188 |
+
"""Generate random mel spectrogram from audio input and convert to audio.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
mel (Mel): instance of Mel class to perform image <-> audio
|
192 |
+
batch_size (int): number of samples to generate
|
193 |
+
audio_file (str): must be a file on disk due to Librosa limitation or
|
194 |
+
raw_audio (np.ndarray): audio as numpy array
|
195 |
+
slice (int): slice number of audio to convert
|
196 |
+
start_step (int): step to start from
|
197 |
+
steps (int): number of de-noising steps (defaults to 50 for DDIM, 1000 for DDPM)
|
198 |
+
generator (torch.Generator): random number generator or None
|
199 |
+
mask_start_secs (float): number of seconds of audio to mask (not generate) at start
|
200 |
+
mask_end_secs (float): number of seconds of audio to mask (not generate) at end
|
201 |
+
step_generator (torch.Generator): random number generator used to de-noise or None
|
202 |
+
eta (float): parameter between 0 and 1 used with DDIM scheduler
|
203 |
+
noise (torch.Tensor): noise tensor of shape (batch_size, 1, height, width) or None
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
List[PIL Image]: mel spectrograms
|
207 |
+
(float, List[np.ndarray]): sample rate and raw audios
|
208 |
+
"""
|
209 |
+
|
210 |
+
steps = steps or 50 if isinstance(self.scheduler,
|
211 |
+
DDIMScheduler) else 1000
|
212 |
+
self.scheduler.set_timesteps(steps)
|
213 |
+
step_generator = step_generator or generator
|
214 |
+
# For backwards compatibility
|
215 |
+
if type(self.unet.sample_size) == int:
|
216 |
+
self.unet.sample_size = (self.unet.sample_size,
|
217 |
+
self.unet.sample_size)
|
218 |
+
if noise is None:
|
219 |
+
noise = torch.randn(
|
220 |
+
(batch_size, self.unet.in_channels, self.unet.sample_size[0],
|
221 |
+
self.unet.sample_size[1]),
|
222 |
+
generator=generator)
|
223 |
+
images = noise
|
224 |
+
mask = None
|
225 |
+
|
226 |
+
if audio_file is not None or raw_audio is not None:
|
227 |
+
mel.load_audio(audio_file, raw_audio)
|
228 |
+
input_image = mel.audio_slice_to_image(slice)
|
229 |
+
input_image = np.frombuffer(input_image.tobytes(),
|
230 |
+
dtype="uint8").reshape(
|
231 |
+
(input_image.height,
|
232 |
+
input_image.width))
|
233 |
+
input_image = ((input_image / 255) * 2 - 1)
|
234 |
+
input_images = np.tile(input_image, (batch_size, 1, 1, 1))
|
235 |
+
|
236 |
+
if hasattr(self, 'vqvae'):
|
237 |
+
input_images = self.vqvae.encode(
|
238 |
+
input_images).latent_dist.sample(generator=generator)
|
239 |
+
input_images = 0.18215 * input_images
|
240 |
+
|
241 |
+
if start_step > 0:
|
242 |
+
images[0, 0] = self.scheduler.add_noise(
|
243 |
+
torch.tensor(input_images[:, np.newaxis, np.newaxis, :]),
|
244 |
+
noise, torch.tensor(steps - start_step))
|
245 |
+
|
246 |
+
pixels_per_second = (self.unet.sample_size[1] *
|
247 |
+
mel.get_sample_rate() / mel.x_res /
|
248 |
+
mel.hop_length)
|
249 |
+
mask_start = int(mask_start_secs * pixels_per_second)
|
250 |
+
mask_end = int(mask_end_secs * pixels_per_second)
|
251 |
+
mask = self.scheduler.add_noise(
|
252 |
+
torch.tensor(input_images[:, np.newaxis, :]), noise,
|
253 |
+
torch.tensor(self.scheduler.timesteps[start_step:]))
|
254 |
+
|
255 |
+
images = images.to(self.device)
|
256 |
+
for step, t in enumerate(
|
257 |
+
self.progress_bar(self.scheduler.timesteps[start_step:])):
|
258 |
+
model_output = self.unet(images, t)['sample']
|
259 |
+
|
260 |
+
if isinstance(self.scheduler, DDIMScheduler):
|
261 |
+
images = self.scheduler.step(
|
262 |
+
model_output=model_output,
|
263 |
+
timestep=t,
|
264 |
+
sample=images,
|
265 |
+
eta=eta,
|
266 |
+
generator=step_generator)['prev_sample']
|
267 |
+
else:
|
268 |
+
images = self.scheduler.step(
|
269 |
+
model_output=model_output,
|
270 |
+
timestep=t,
|
271 |
+
sample=images,
|
272 |
+
generator=step_generator)['prev_sample']
|
273 |
+
|
274 |
+
if mask is not None:
|
275 |
+
if mask_start > 0:
|
276 |
+
images[:, :, :, :mask_start] = mask[
|
277 |
+
step, :, :, :, :mask_start]
|
278 |
+
if mask_end > 0:
|
279 |
+
images[:, :, :, -mask_end:] = mask[step, :, :, :,
|
280 |
+
-mask_end:]
|
281 |
+
|
282 |
+
if hasattr(self, 'vqvae'):
|
283 |
+
# 0.18215 was scaling factor used in training to ensure unit variance
|
284 |
+
images = 1 / 0.18215 * images
|
285 |
+
images = self.vqvae.decode(images)['sample']
|
286 |
+
|
287 |
+
images = (images / 2 + 0.5).clamp(0, 1)
|
288 |
+
images = images.cpu().permute(0, 2, 3, 1).numpy()
|
289 |
+
images = (images * 255).round().astype("uint8")
|
290 |
+
images = list(
|
291 |
+
map(lambda _: Image.fromarray(_[:, :, 0]), images) if images.
|
292 |
+
shape[3] == 1 else map(
|
293 |
+
lambda _: Image.fromarray(_, mode='RGB').convert('L'), images))
|
294 |
+
|
295 |
+
audios = list(map(lambda _: mel.image_to_audio(_), images))
|
296 |
+
return images, (mel.get_sample_rate(), audios)
|
297 |
+
|
298 |
+
@torch.no_grad()
|
299 |
+
def encode(self, images: List[Image.Image], steps: int = 50) -> np.ndarray:
|
300 |
+
"""Reverse step process: recover noisy image from generated image.
|
301 |
+
|
302 |
+
Args:
|
303 |
+
images (List[PIL Image]): list of images to encode
|
304 |
+
steps (int): number of encoding steps to perform (defaults to 50)
|
305 |
+
|
306 |
+
Returns:
|
307 |
+
np.ndarray: noise tensor of shape (batch_size, 1, height, width)
|
308 |
+
"""
|
309 |
+
|
310 |
+
# Only works with DDIM as this method is deterministic
|
311 |
+
assert isinstance(self.scheduler, DDIMScheduler)
|
312 |
+
self.scheduler.set_timesteps(steps)
|
313 |
+
sample = np.array([
|
314 |
+
np.frombuffer(image.tobytes(), dtype="uint8").reshape(
|
315 |
+
(1, image.height, image.width)) for image in images
|
316 |
+
])
|
317 |
+
sample = ((sample / 255) * 2 - 1)
|
318 |
+
sample = torch.Tensor(sample).to(self.device)
|
319 |
+
|
320 |
+
for t in self.progress_bar(torch.flip(self.scheduler.timesteps,
|
321 |
+
(0, ))):
|
322 |
+
prev_timestep = (t - self.scheduler.num_train_timesteps //
|
323 |
+
self.scheduler.num_inference_steps)
|
324 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[t]
|
325 |
+
alpha_prod_t_prev = (self.scheduler.alphas_cumprod[prev_timestep]
|
326 |
+
if prev_timestep >= 0 else
|
327 |
+
self.scheduler.final_alpha_cumprod)
|
328 |
+
beta_prod_t = 1 - alpha_prod_t
|
329 |
+
model_output = self.unet(sample, t)['sample']
|
330 |
+
pred_sample_direction = (1 -
|
331 |
+
alpha_prod_t_prev)**(0.5) * model_output
|
332 |
+
sample = (sample -
|
333 |
+
pred_sample_direction) * alpha_prod_t_prev**(-0.5)
|
334 |
+
sample = sample * alpha_prod_t**(0.5) + beta_prod_t**(
|
335 |
+
0.5) * model_output
|
336 |
+
|
337 |
+
return sample
|
338 |
+
|
339 |
+
@staticmethod
|
340 |
+
def slerp(x0: torch.Tensor, x1: torch.Tensor,
|
341 |
+
alpha: float) -> torch.Tensor:
|
342 |
+
"""Spherical Linear intERPolation
|
343 |
+
|
344 |
+
Args:
|
345 |
+
x0 (torch.Tensor): first tensor to interpolate between
|
346 |
+
x1 (torch.Tensor): seconds tensor to interpolate between
|
347 |
+
alpha (float): interpolation between 0 and 1
|
348 |
+
|
349 |
+
Returns:
|
350 |
+
torch.Tensor: interpolated tensor
|
351 |
+
"""
|
352 |
+
|
353 |
+
theta = acos(
|
354 |
+
torch.dot(torch.flatten(x0), torch.flatten(x1)) / torch.norm(x0) /
|
355 |
+
torch.norm(x1))
|
356 |
+
return sin((1 - alpha) * theta) * x0 / sin(theta) + sin(
|
357 |
+
alpha * theta) * x1 / sin(theta)
|
358 |
+
|
359 |
+
|
360 |
+
class LatentAudioDiffusionPipeline(AudioDiffusionPipeline):
|
361 |
+
|
362 |
+
def __init__(self, unet: UNet2DConditionModel,
|
363 |
+
scheduler: Union[DDIMScheduler,
|
364 |
+
DDPMScheduler], vqvae: AutoencoderKL):
|
365 |
+
super().__init__(unet=unet, scheduler=scheduler)
|
366 |
+
self.register_modules(vqvae=vqvae)
|
367 |
+
|
368 |
+
def __call__(self, *args, **kwargs):
|
369 |
+
return super().__call__(*args, **kwargs)
|
audiodiffusion/mel.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
warnings.filterwarnings('ignore')
|
4 |
+
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
|
10 |
+
class Mel:
|
11 |
+
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
x_res: int = 256,
|
15 |
+
y_res: int = 256,
|
16 |
+
sample_rate: int = 22050,
|
17 |
+
n_fft: int = 2048,
|
18 |
+
hop_length: int = 512,
|
19 |
+
top_db: int = 80,
|
20 |
+
):
|
21 |
+
"""Class to convert audio to mel spectrograms and vice versa.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
x_res (int): x resolution of spectrogram (time)
|
25 |
+
y_res (int): y resolution of spectrogram (frequency bins)
|
26 |
+
sample_rate (int): sample rate of audio
|
27 |
+
n_fft (int): number of Fast Fourier Transforms
|
28 |
+
hop_length (int): hop length (a higher number is recommended for lower than 256 y_res)
|
29 |
+
top_db (int): loudest in decibels
|
30 |
+
"""
|
31 |
+
self.x_res = x_res
|
32 |
+
self.y_res = y_res
|
33 |
+
self.sr = sample_rate
|
34 |
+
self.n_fft = n_fft
|
35 |
+
self.hop_length = hop_length
|
36 |
+
self.n_mels = self.y_res
|
37 |
+
self.slice_size = self.x_res * self.hop_length - 1
|
38 |
+
self.fmax = self.sr / 2
|
39 |
+
self.top_db = top_db
|
40 |
+
self.audio = None
|
41 |
+
|
42 |
+
def load_audio(self, audio_file: str = None, raw_audio: np.ndarray = None):
|
43 |
+
"""Load audio.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
audio_file (str): must be a file on disk due to Librosa limitation or
|
47 |
+
raw_audio (np.ndarray): audio as numpy array
|
48 |
+
"""
|
49 |
+
if audio_file is not None:
|
50 |
+
self.audio, _ = librosa.load(audio_file, mono=True, sr=self.sr)
|
51 |
+
else:
|
52 |
+
self.audio = raw_audio
|
53 |
+
|
54 |
+
# Pad with silence if necessary.
|
55 |
+
if len(self.audio) < self.x_res * self.hop_length:
|
56 |
+
self.audio = np.concatenate([
|
57 |
+
self.audio,
|
58 |
+
np.zeros((self.x_res * self.hop_length - len(self.audio), ))
|
59 |
+
])
|
60 |
+
|
61 |
+
def get_number_of_slices(self) -> int:
|
62 |
+
"""Get number of slices in audio.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
int: number of spectograms audio can be sliced into
|
66 |
+
"""
|
67 |
+
return len(self.audio) // self.slice_size
|
68 |
+
|
69 |
+
def get_audio_slice(self, slice: int = 0) -> np.ndarray:
|
70 |
+
"""Get slice of audio.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
slice (int): slice number of audio (out of get_number_of_slices())
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
np.ndarray: audio as numpy array
|
77 |
+
"""
|
78 |
+
return self.audio[self.slice_size * slice:self.slice_size *
|
79 |
+
(slice + 1)]
|
80 |
+
|
81 |
+
def get_sample_rate(self) -> int:
|
82 |
+
"""Get sample rate:
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
int: sample rate of audio
|
86 |
+
"""
|
87 |
+
return self.sr
|
88 |
+
|
89 |
+
def audio_slice_to_image(self, slice: int) -> Image.Image:
|
90 |
+
"""Convert slice of audio to spectrogram.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
slice (int): slice number of audio to convert (out of get_number_of_slices())
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
PIL Image: grayscale image of x_res x y_res
|
97 |
+
"""
|
98 |
+
S = librosa.feature.melspectrogram(
|
99 |
+
y=self.get_audio_slice(slice),
|
100 |
+
sr=self.sr,
|
101 |
+
n_fft=self.n_fft,
|
102 |
+
hop_length=self.hop_length,
|
103 |
+
n_mels=self.n_mels,
|
104 |
+
fmax=self.fmax,
|
105 |
+
)
|
106 |
+
log_S = librosa.power_to_db(S, ref=np.max, top_db=self.top_db)
|
107 |
+
bytedata = (((log_S + self.top_db) * 255 / self.top_db).clip(0, 255) +
|
108 |
+
0.5).astype(np.uint8)
|
109 |
+
image = Image.fromarray(bytedata)
|
110 |
+
return image
|
111 |
+
|
112 |
+
def image_to_audio(self, image: Image.Image) -> np.ndarray:
|
113 |
+
"""Converts spectrogram to audio.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
image (PIL Image): x_res x y_res grayscale image
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
audio (np.ndarray): raw audio
|
120 |
+
"""
|
121 |
+
bytedata = np.frombuffer(image.tobytes(), dtype="uint8").reshape(
|
122 |
+
(image.height, image.width))
|
123 |
+
log_S = bytedata.astype("float") * self.top_db / 255 - self.top_db
|
124 |
+
S = librosa.db_to_power(log_S)
|
125 |
+
audio = librosa.feature.inverse.mel_to_audio(
|
126 |
+
S, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length)
|
127 |
+
return audio
|
audiodiffusion/utils.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adpated from https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from diffusers import AutoencoderKL
|
5 |
+
|
6 |
+
|
7 |
+
def shave_segments(path, n_shave_prefix_segments=1):
|
8 |
+
"""
|
9 |
+
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
10 |
+
"""
|
11 |
+
if n_shave_prefix_segments >= 0:
|
12 |
+
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
13 |
+
else:
|
14 |
+
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
15 |
+
|
16 |
+
|
17 |
+
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
18 |
+
"""
|
19 |
+
Updates paths inside resnets to the new naming scheme (local renaming)
|
20 |
+
"""
|
21 |
+
mapping = []
|
22 |
+
for old_item in old_list:
|
23 |
+
new_item = old_item
|
24 |
+
|
25 |
+
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
26 |
+
new_item = shave_segments(
|
27 |
+
new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
28 |
+
|
29 |
+
mapping.append({"old": old_item, "new": new_item})
|
30 |
+
|
31 |
+
return mapping
|
32 |
+
|
33 |
+
|
34 |
+
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
35 |
+
"""
|
36 |
+
Updates paths inside attentions to the new naming scheme (local renaming)
|
37 |
+
"""
|
38 |
+
mapping = []
|
39 |
+
for old_item in old_list:
|
40 |
+
new_item = old_item
|
41 |
+
|
42 |
+
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
43 |
+
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
44 |
+
|
45 |
+
new_item = new_item.replace("q.weight", "query.weight")
|
46 |
+
new_item = new_item.replace("q.bias", "query.bias")
|
47 |
+
|
48 |
+
new_item = new_item.replace("k.weight", "key.weight")
|
49 |
+
new_item = new_item.replace("k.bias", "key.bias")
|
50 |
+
|
51 |
+
new_item = new_item.replace("v.weight", "value.weight")
|
52 |
+
new_item = new_item.replace("v.bias", "value.bias")
|
53 |
+
|
54 |
+
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
|
55 |
+
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
|
56 |
+
|
57 |
+
new_item = shave_segments(
|
58 |
+
new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
59 |
+
|
60 |
+
mapping.append({"old": old_item, "new": new_item})
|
61 |
+
|
62 |
+
return mapping
|
63 |
+
|
64 |
+
|
65 |
+
def assign_to_checkpoint(paths,
|
66 |
+
checkpoint,
|
67 |
+
old_checkpoint,
|
68 |
+
attention_paths_to_split=None,
|
69 |
+
additional_replacements=None,
|
70 |
+
config=None):
|
71 |
+
"""
|
72 |
+
This does the final conversion step: take locally converted weights and apply a global renaming
|
73 |
+
to them. It splits attention layers, and takes into account additional replacements
|
74 |
+
that may arise.
|
75 |
+
|
76 |
+
Assigns the weights to the new checkpoint.
|
77 |
+
"""
|
78 |
+
assert isinstance(
|
79 |
+
paths, list
|
80 |
+
), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
81 |
+
|
82 |
+
# Splits the attention layers into three variables.
|
83 |
+
if attention_paths_to_split is not None:
|
84 |
+
for path, path_map in attention_paths_to_split.items():
|
85 |
+
old_tensor = old_checkpoint[path]
|
86 |
+
channels = old_tensor.shape[0] // 3
|
87 |
+
|
88 |
+
target_shape = (-1,
|
89 |
+
channels) if len(old_tensor.shape) == 3 else (-1)
|
90 |
+
|
91 |
+
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
92 |
+
|
93 |
+
old_tensor = old_tensor.reshape((num_heads, 3 * channels //
|
94 |
+
num_heads) + old_tensor.shape[1:])
|
95 |
+
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
96 |
+
|
97 |
+
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
98 |
+
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
99 |
+
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
100 |
+
|
101 |
+
for path in paths:
|
102 |
+
new_path = path["new"]
|
103 |
+
|
104 |
+
# These have already been assigned
|
105 |
+
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
|
106 |
+
continue
|
107 |
+
|
108 |
+
# Global renaming happens here
|
109 |
+
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
110 |
+
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
111 |
+
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
112 |
+
|
113 |
+
if additional_replacements is not None:
|
114 |
+
for replacement in additional_replacements:
|
115 |
+
new_path = new_path.replace(replacement["old"],
|
116 |
+
replacement["new"])
|
117 |
+
|
118 |
+
# proj_attn.weight has to be converted from conv 1D to linear
|
119 |
+
if "proj_attn.weight" in new_path:
|
120 |
+
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
121 |
+
else:
|
122 |
+
checkpoint[new_path] = old_checkpoint[path["old"]]
|
123 |
+
|
124 |
+
|
125 |
+
def conv_attn_to_linear(checkpoint):
|
126 |
+
keys = list(checkpoint.keys())
|
127 |
+
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
128 |
+
for key in keys:
|
129 |
+
if ".".join(key.split(".")[-2:]) in attn_keys:
|
130 |
+
if checkpoint[key].ndim > 2:
|
131 |
+
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
132 |
+
elif "proj_attn.weight" in key:
|
133 |
+
if checkpoint[key].ndim > 2:
|
134 |
+
checkpoint[key] = checkpoint[key][:, :, 0]
|
135 |
+
|
136 |
+
|
137 |
+
def create_vae_diffusers_config(original_config):
|
138 |
+
"""
|
139 |
+
Creates a config for the diffusers based on the config of the LDM model.
|
140 |
+
"""
|
141 |
+
vae_params = original_config.model.params.ddconfig
|
142 |
+
_ = original_config.model.params.embed_dim
|
143 |
+
|
144 |
+
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
|
145 |
+
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
146 |
+
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
147 |
+
|
148 |
+
config = dict(
|
149 |
+
sample_size=vae_params.resolution,
|
150 |
+
in_channels=vae_params.in_channels,
|
151 |
+
out_channels=vae_params.out_ch,
|
152 |
+
down_block_types=tuple(down_block_types),
|
153 |
+
up_block_types=tuple(up_block_types),
|
154 |
+
block_out_channels=tuple(block_out_channels),
|
155 |
+
latent_channels=vae_params.z_channels,
|
156 |
+
layers_per_block=vae_params.num_res_blocks,
|
157 |
+
)
|
158 |
+
return config
|
159 |
+
|
160 |
+
|
161 |
+
def convert_ldm_vae_checkpoint(checkpoint, config):
|
162 |
+
# extract state dict for VAE
|
163 |
+
vae_state_dict = checkpoint
|
164 |
+
|
165 |
+
new_checkpoint = {}
|
166 |
+
|
167 |
+
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict[
|
168 |
+
"encoder.conv_in.weight"]
|
169 |
+
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict[
|
170 |
+
"encoder.conv_in.bias"]
|
171 |
+
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[
|
172 |
+
"encoder.conv_out.weight"]
|
173 |
+
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict[
|
174 |
+
"encoder.conv_out.bias"]
|
175 |
+
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[
|
176 |
+
"encoder.norm_out.weight"]
|
177 |
+
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[
|
178 |
+
"encoder.norm_out.bias"]
|
179 |
+
|
180 |
+
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict[
|
181 |
+
"decoder.conv_in.weight"]
|
182 |
+
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict[
|
183 |
+
"decoder.conv_in.bias"]
|
184 |
+
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[
|
185 |
+
"decoder.conv_out.weight"]
|
186 |
+
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict[
|
187 |
+
"decoder.conv_out.bias"]
|
188 |
+
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[
|
189 |
+
"decoder.norm_out.weight"]
|
190 |
+
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[
|
191 |
+
"decoder.norm_out.bias"]
|
192 |
+
|
193 |
+
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
194 |
+
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
195 |
+
new_checkpoint["post_quant_conv.weight"] = vae_state_dict[
|
196 |
+
"post_quant_conv.weight"]
|
197 |
+
new_checkpoint["post_quant_conv.bias"] = vae_state_dict[
|
198 |
+
"post_quant_conv.bias"]
|
199 |
+
|
200 |
+
# Retrieves the keys for the encoder down blocks only
|
201 |
+
num_down_blocks = len({
|
202 |
+
".".join(layer.split(".")[:3])
|
203 |
+
for layer in vae_state_dict if "encoder.down" in layer
|
204 |
+
})
|
205 |
+
down_blocks = {
|
206 |
+
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key]
|
207 |
+
for layer_id in range(num_down_blocks)
|
208 |
+
}
|
209 |
+
|
210 |
+
# Retrieves the keys for the decoder up blocks only
|
211 |
+
num_up_blocks = len({
|
212 |
+
".".join(layer.split(".")[:3])
|
213 |
+
for layer in vae_state_dict if "decoder.up" in layer
|
214 |
+
})
|
215 |
+
up_blocks = {
|
216 |
+
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key]
|
217 |
+
for layer_id in range(num_up_blocks)
|
218 |
+
}
|
219 |
+
|
220 |
+
for i in range(num_down_blocks):
|
221 |
+
resnets = [
|
222 |
+
key for key in down_blocks[i]
|
223 |
+
if f"down.{i}" in key and f"down.{i}.downsample" not in key
|
224 |
+
]
|
225 |
+
|
226 |
+
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
227 |
+
new_checkpoint[
|
228 |
+
f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
|
229 |
+
f"encoder.down.{i}.downsample.conv.weight")
|
230 |
+
new_checkpoint[
|
231 |
+
f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
|
232 |
+
f"encoder.down.{i}.downsample.conv.bias")
|
233 |
+
|
234 |
+
paths = renew_vae_resnet_paths(resnets)
|
235 |
+
meta_path = {
|
236 |
+
"old": f"down.{i}.block",
|
237 |
+
"new": f"down_blocks.{i}.resnets"
|
238 |
+
}
|
239 |
+
assign_to_checkpoint(paths,
|
240 |
+
new_checkpoint,
|
241 |
+
vae_state_dict,
|
242 |
+
additional_replacements=[meta_path],
|
243 |
+
config=config)
|
244 |
+
|
245 |
+
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
246 |
+
num_mid_res_blocks = 2
|
247 |
+
for i in range(1, num_mid_res_blocks + 1):
|
248 |
+
resnets = [
|
249 |
+
key for key in mid_resnets if f"encoder.mid.block_{i}" in key
|
250 |
+
]
|
251 |
+
|
252 |
+
paths = renew_vae_resnet_paths(resnets)
|
253 |
+
meta_path = {
|
254 |
+
"old": f"mid.block_{i}",
|
255 |
+
"new": f"mid_block.resnets.{i - 1}"
|
256 |
+
}
|
257 |
+
assign_to_checkpoint(paths,
|
258 |
+
new_checkpoint,
|
259 |
+
vae_state_dict,
|
260 |
+
additional_replacements=[meta_path],
|
261 |
+
config=config)
|
262 |
+
|
263 |
+
mid_attentions = [
|
264 |
+
key for key in vae_state_dict if "encoder.mid.attn" in key
|
265 |
+
]
|
266 |
+
paths = renew_vae_attention_paths(mid_attentions)
|
267 |
+
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
268 |
+
assign_to_checkpoint(paths,
|
269 |
+
new_checkpoint,
|
270 |
+
vae_state_dict,
|
271 |
+
additional_replacements=[meta_path],
|
272 |
+
config=config)
|
273 |
+
conv_attn_to_linear(new_checkpoint)
|
274 |
+
|
275 |
+
for i in range(num_up_blocks):
|
276 |
+
block_id = num_up_blocks - 1 - i
|
277 |
+
resnets = [
|
278 |
+
key for key in up_blocks[block_id]
|
279 |
+
if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
280 |
+
]
|
281 |
+
|
282 |
+
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
283 |
+
new_checkpoint[
|
284 |
+
f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
|
285 |
+
f"decoder.up.{block_id}.upsample.conv.weight"]
|
286 |
+
new_checkpoint[
|
287 |
+
f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
|
288 |
+
f"decoder.up.{block_id}.upsample.conv.bias"]
|
289 |
+
|
290 |
+
paths = renew_vae_resnet_paths(resnets)
|
291 |
+
meta_path = {
|
292 |
+
"old": f"up.{block_id}.block",
|
293 |
+
"new": f"up_blocks.{i}.resnets"
|
294 |
+
}
|
295 |
+
assign_to_checkpoint(paths,
|
296 |
+
new_checkpoint,
|
297 |
+
vae_state_dict,
|
298 |
+
additional_replacements=[meta_path],
|
299 |
+
config=config)
|
300 |
+
|
301 |
+
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
302 |
+
num_mid_res_blocks = 2
|
303 |
+
for i in range(1, num_mid_res_blocks + 1):
|
304 |
+
resnets = [
|
305 |
+
key for key in mid_resnets if f"decoder.mid.block_{i}" in key
|
306 |
+
]
|
307 |
+
|
308 |
+
paths = renew_vae_resnet_paths(resnets)
|
309 |
+
meta_path = {
|
310 |
+
"old": f"mid.block_{i}",
|
311 |
+
"new": f"mid_block.resnets.{i - 1}"
|
312 |
+
}
|
313 |
+
assign_to_checkpoint(paths,
|
314 |
+
new_checkpoint,
|
315 |
+
vae_state_dict,
|
316 |
+
additional_replacements=[meta_path],
|
317 |
+
config=config)
|
318 |
+
|
319 |
+
mid_attentions = [
|
320 |
+
key for key in vae_state_dict if "decoder.mid.attn" in key
|
321 |
+
]
|
322 |
+
paths = renew_vae_attention_paths(mid_attentions)
|
323 |
+
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
324 |
+
assign_to_checkpoint(paths,
|
325 |
+
new_checkpoint,
|
326 |
+
vae_state_dict,
|
327 |
+
additional_replacements=[meta_path],
|
328 |
+
config=config)
|
329 |
+
conv_attn_to_linear(new_checkpoint)
|
330 |
+
return new_checkpoint
|
331 |
+
|
332 |
+
def convert_ldm_to_hf_vae(ldm_checkpoint, ldm_config, hf_checkpoint):
|
333 |
+
checkpoint = torch.load(ldm_checkpoint)["state_dict"]
|
334 |
+
|
335 |
+
# Convert the VAE model.
|
336 |
+
vae_config = create_vae_diffusers_config(ldm_config)
|
337 |
+
converted_vae_checkpoint = convert_ldm_vae_checkpoint(
|
338 |
+
checkpoint, vae_config)
|
339 |
+
|
340 |
+
vae = AutoencoderKL(**vae_config)
|
341 |
+
vae.load_state_dict(converted_vae_checkpoint)
|
342 |
+
vae.save_pretrained(hf_checkpoint)
|