Spaces:
Runtime error
Runtime error
from contextlib import nullcontext | |
import torch | |
from torch import autocast | |
from diffusers import StableDiffusionPipeline | |
import gradio as gr | |
CHECKPOINTS = [ | |
"epoch-000025", | |
"epoch-000081" | |
] | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
context = autocast if device == "cuda" else nullcontext | |
dtype = torch.float16 if device == "cuda" else torch.float32 | |
def load_pipe(checkpoint): | |
pipe = StableDiffusionPipeline.from_pretrained("Gazoche/sd-gundam-diffusers", revision=checkpoint, torch_dtype=dtype) | |
pipe = pipe.to(device) | |
# Disabling the NSFW filter as it's getting confused by the generated images | |
def null_safety(images, **kwargs): | |
return images, False | |
pipe.safety_checker = null_safety | |
return pipe | |
pipes = { | |
checkpoint: load_pipe(checkpoint) | |
for checkpoint in CHECKPOINTS | |
} | |
def infer(prompt, n_samples, steps, scale, model): | |
checkpoint = "epoch-000025" if model == "normal" else "epoch-000081" | |
in_prompt = "" | |
guidance_scale = 0.0 | |
if prompt is not None: | |
in_prompt = prompt | |
guidance_scale = scale | |
with context("cuda"): | |
images = pipes[checkpoint]( | |
n_samples * [in_prompt], | |
guidance_scale=guidance_scale, | |
num_inference_steps=steps | |
).images | |
return images | |
def infer_random(n_samples, steps, scale, model): | |
return infer(None, n_samples, steps, scale, model) | |
css = """ | |
a { | |
color: inherit; | |
text-decoration: underline; | |
} | |
.gradio-container { | |
font-family: 'IBM Plex Sans', sans-serif; | |
} | |
.gr-button { | |
color: white; | |
border-color: #9d66e5; | |
background: #9d66e5; | |
} | |
input[type='range'] { | |
accent-color: #9d66e5; | |
} | |
.dark input[type='range'] { | |
accent-color: #dfdfdf; | |
} | |
.container { | |
max-width: 730px; | |
margin: auto; | |
padding-top: 1.5rem; | |
} | |
#gallery { | |
min-height: 22rem; | |
margin-bottom: 15px; | |
margin-left: auto; | |
margin-right: auto; | |
border-bottom-right-radius: .5rem !important; | |
border-bottom-left-radius: .5rem !important; | |
} | |
#gallery>div>.h-full { | |
min-height: 20rem; | |
} | |
.details:hover { | |
text-decoration: underline; | |
} | |
.gr-button { | |
white-space: nowrap; | |
} | |
.gr-button:focus { | |
border-color: rgb(147 197 253 / var(--tw-border-opacity)); | |
outline: none; | |
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); | |
--tw-border-opacity: 1; | |
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); | |
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); | |
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); | |
--tw-ring-opacity: .5; | |
} | |
#advanced-options { | |
margin-bottom: 20px; | |
} | |
.footer { | |
margin-bottom: 45px; | |
margin-top: 35px; | |
text-align: center; | |
border-bottom: 1px solid #e5e5e5; | |
} | |
.footer>p { | |
font-size: .8rem; | |
display: inline-block; | |
padding: 0 10px; | |
transform: translateY(10px); | |
background: white; | |
} | |
.dark .logo{ filter: invert(1); } | |
.dark .footer { | |
border-color: #303030; | |
} | |
.dark .footer>p { | |
background: #0b0f19; | |
} | |
.acknowledgments h4{ | |
margin: 1.25em 0 .25em 0; | |
font-weight: bold; | |
font-size: 115%; | |
} | |
""" | |
block = gr.Blocks(css=css) | |
with block: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> | |
<div> | |
<h1 style="font-weight: 900; font-size: 3rem;"> | |
Gundam text to image | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
From a text description, generate a mecha from the anime franchise Mobile Suit Gundam | |
</p> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Github: <a href="https://github.com/Askannz/gundam-stable-diffusion">https://github.com/Askannz/gundam-stable-diffusion</a> | |
</p> | |
<ul> | |
<li>More steps generally means less visual noise but fewer details</li> | |
<li>Text guidance controls how much the prompt influences the generation</li> | |
<li>The overfitted model gives cleaner but less original results</li> | |
</ul> | |
</div> | |
""" | |
) | |
with gr.Group(): | |
with gr.Box(): | |
with gr.Row().style(mobile_collapse=False, equal_height=True): | |
text = gr.Textbox( | |
label="Enter your prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
).style( | |
border=(True, False, True, True), | |
rounded=(True, False, False, True), | |
container=False, | |
) | |
btn = gr.Button("Generate from prompt").style( | |
margin=False, | |
rounded=(False, True, True, False), | |
) | |
with gr.Box(): | |
with gr.Row().style(mobile_collapse=False, equal_height=True): | |
btn_rand = gr.Button("Random").style( | |
margin=False, | |
rounded=(False, True, True, False), | |
) | |
gallery = gr.Gallery( | |
label="Generated images", show_label=False, elem_id="gallery" | |
).style(grid=[2], height="auto") | |
with gr.Row(elem_id="advanced-options"): | |
samples = gr.Slider(label="Images", minimum=1, maximum=2, value=1, step=1) | |
steps = gr.Slider(label="Steps", minimum=5, maximum=50, value=25, step=5) | |
scale = gr.Slider( | |
label="Text Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1 | |
) | |
with gr.Row(elem_id="checkpoint"): | |
model = gr.Radio(label="Model", choices=["normal", "overfitted"], value="normal") | |
#model = gr.Radio(label="Model", choices=["normal"], value="normal") | |
text.submit(infer, inputs=[text, samples, steps, scale, model], outputs=gallery) | |
btn.click(infer, inputs=[text, samples, steps, scale, model], outputs=gallery) | |
btn_rand.click(infer_random, inputs=[samples, steps, scale, model], outputs=gallery) | |
gr.HTML( | |
""" | |
<div class="footer"> | |
<p> Gradio Demo by 🤗 Hugging Face and Gazoche | |
</p> | |
</div> | |
""" | |
) | |
block.launch() | |