from contextlib import nullcontext import torch from torch import autocast from diffusers import StableDiffusionPipeline import gradio as gr CHECKPOINTS = [ "epoch-000025", "epoch-000081" ] device = "cuda" if torch.cuda.is_available() else "cpu" context = autocast if device == "cuda" else nullcontext dtype = torch.float16 if device == "cuda" else torch.float32 def load_pipe(checkpoint): pipe = StableDiffusionPipeline.from_pretrained("Gazoche/sd-gundam-diffusers", revision=checkpoint, torch_dtype=dtype) pipe = pipe.to(device) # Disabling the NSFW filter as it's getting confused by the generated images def null_safety(images, **kwargs): return images, False pipe.safety_checker = null_safety return pipe pipes = { checkpoint: load_pipe(checkpoint) for checkpoint in CHECKPOINTS } def infer(prompt, n_samples, steps, scale, model): checkpoint = "epoch-000025" if model == "normal" else "epoch-000081" in_prompt = "" guidance_scale = 0.0 if prompt is not None: in_prompt = prompt guidance_scale = scale with context("cuda"): images = pipes[checkpoint]( n_samples * [in_prompt], guidance_scale=guidance_scale, num_inference_steps=steps ).images return images def infer_random(n_samples, steps, scale, model): return infer(None, n_samples, steps, scale, model) css = """ a { color: inherit; text-decoration: underline; } .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: #9d66e5; background: #9d66e5; } input[type='range'] { accent-color: #9d66e5; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-options { margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .logo{ filter: invert(1); } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } """ block = gr.Blocks(css=css) with block: gr.HTML( """
From a text description, generate a mecha from the anime franchise Mobile Suit Gundam
Github: https://github.com/Askannz/gundam-stable-diffusion