Spaces:
Runtime error
Runtime error
from models.med import BertConfig, BertModel | |
from transformers import BertTokenizer | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from models.blip import create_vit, init_tokenizer, load_checkpoint | |
class BLIP_Retrieval(nn.Module): | |
def __init__(self, | |
med_config = 'configs/med_config.json', | |
image_size = 384, | |
vit = 'base', | |
vit_grad_ckpt = False, | |
vit_ckpt_layer = 0, | |
embed_dim = 256, | |
queue_size = 57600, | |
momentum = 0.995, | |
negative_all_rank = False, | |
): | |
""" | |
Args: | |
med_config (str): path for the mixture of encoder-decoder model's configuration file | |
image_size (int): input image size | |
vit (str): model size of vision transformer | |
""" | |
super().__init__() | |
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) | |
self.tokenizer = init_tokenizer() | |
med_config = BertConfig.from_json_file(med_config) | |
med_config.encoder_width = vision_width | |
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) | |
text_width = self.text_encoder.config.hidden_size | |
self.vision_proj = nn.Linear(vision_width, embed_dim) | |
self.text_proj = nn.Linear(text_width, embed_dim) | |
self.itm_head = nn.Linear(text_width, 2) | |
# create momentum encoders | |
self.visual_encoder_m, vision_width = create_vit(vit,image_size) | |
self.vision_proj_m = nn.Linear(vision_width, embed_dim) | |
self.text_encoder_m = BertModel(config=med_config, add_pooling_layer=False) | |
self.text_proj_m = nn.Linear(text_width, embed_dim) | |
self.model_pairs = [[self.visual_encoder,self.visual_encoder_m], | |
[self.vision_proj,self.vision_proj_m], | |
[self.text_encoder,self.text_encoder_m], | |
[self.text_proj,self.text_proj_m], | |
] | |
self.copy_params() | |
# create the queue | |
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size)) | |
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size)) | |
self.register_buffer("idx_queue", torch.full((1,queue_size),-100)) | |
self.register_buffer("ptr_queue", torch.zeros(1, dtype=torch.long)) | |
self.image_queue = nn.functional.normalize(self.image_queue, dim=0) | |
self.text_queue = nn.functional.normalize(self.text_queue, dim=0) | |
self.queue_size = queue_size | |
self.momentum = momentum | |
self.temp = nn.Parameter(0.07*torch.ones([])) | |
self.negative_all_rank = negative_all_rank | |
def forward(self, image, caption, alpha, idx): | |
with torch.no_grad(): | |
self.temp.clamp_(0.001,0.5) | |
image_embeds = self.visual_encoder(image) | |
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) | |
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1) | |
text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35, | |
return_tensors="pt").to(image.device) | |
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask, | |
return_dict = True, mode = 'text') | |
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1) | |
###============== Image-text Contrastive Learning ===================### | |
idx = idx.view(-1,1) | |
idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()],dim=1) | |
pos_idx = torch.eq(idx, idx_all).float() | |
sim_targets = pos_idx / pos_idx.sum(1,keepdim=True) | |
# get momentum features | |
with torch.no_grad(): | |
self._momentum_update() | |
image_embeds_m = self.visual_encoder_m(image) | |
image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1) | |
image_feat_m_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1) | |
text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask, | |
return_dict = True, mode = 'text') | |
text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1) | |
text_feat_m_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1) | |
sim_i2t_m = image_feat_m @ text_feat_m_all / self.temp | |
sim_t2i_m = text_feat_m @ image_feat_m_all / self.temp | |
sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets | |
sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets | |
sim_i2t = image_feat @ text_feat_m_all / self.temp | |
sim_t2i = text_feat @ image_feat_m_all / self.temp | |
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean() | |
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean() | |
loss_ita = (loss_i2t+loss_t2i)/2 | |
idxs = concat_all_gather(idx) | |
self._dequeue_and_enqueue(image_feat_m, text_feat_m, idxs) | |
###============== Image-text Matching ===================### | |
encoder_input_ids = text.input_ids.clone() | |
encoder_input_ids[:,0] = self.tokenizer.enc_token_id | |
# forward the positve image-text pair | |
bs = image.size(0) | |
output_pos = self.text_encoder(encoder_input_ids, | |
attention_mask = text.attention_mask, | |
encoder_hidden_states = image_embeds, | |
encoder_attention_mask = image_atts, | |
return_dict = True, | |
) | |
if self.negative_all_rank: | |
# compute sample similarity | |
with torch.no_grad(): | |
mask = torch.eq(idx, idxs.t()) | |
image_feat_world = concat_all_gather(image_feat) | |
text_feat_world = concat_all_gather(text_feat) | |
sim_i2t = image_feat @ text_feat_world.t() / self.temp | |
sim_t2i = text_feat @ image_feat_world.t() / self.temp | |
weights_i2t = F.softmax(sim_i2t,dim=1) | |
weights_i2t.masked_fill_(mask, 0) | |
weights_t2i = F.softmax(sim_t2i,dim=1) | |
weights_t2i.masked_fill_(mask, 0) | |
image_embeds_world = all_gather_with_grad(image_embeds) | |
# select a negative image (from all ranks) for each text | |
image_embeds_neg = [] | |
for b in range(bs): | |
neg_idx = torch.multinomial(weights_t2i[b], 1).item() | |
image_embeds_neg.append(image_embeds_world[neg_idx]) | |
image_embeds_neg = torch.stack(image_embeds_neg,dim=0) | |
# select a negative text (from all ranks) for each image | |
input_ids_world = concat_all_gather(encoder_input_ids) | |
att_mask_world = concat_all_gather(text.attention_mask) | |
text_ids_neg = [] | |
text_atts_neg = [] | |
for b in range(bs): | |
neg_idx = torch.multinomial(weights_i2t[b], 1).item() | |
text_ids_neg.append(input_ids_world[neg_idx]) | |
text_atts_neg.append(att_mask_world[neg_idx]) | |
else: | |
with torch.no_grad(): | |
mask = torch.eq(idx, idx.t()) | |
sim_i2t = image_feat @ text_feat.t() / self.temp | |
sim_t2i = text_feat @ image_feat.t() / self.temp | |
weights_i2t = F.softmax(sim_i2t,dim=1) | |
weights_i2t.masked_fill_(mask, 0) | |
weights_t2i = F.softmax(sim_t2i,dim=1) | |
weights_t2i.masked_fill_(mask, 0) | |
# select a negative image (from same rank) for each text | |
image_embeds_neg = [] | |
for b in range(bs): | |
neg_idx = torch.multinomial(weights_t2i[b], 1).item() | |
image_embeds_neg.append(image_embeds[neg_idx]) | |
image_embeds_neg = torch.stack(image_embeds_neg,dim=0) | |
# select a negative text (from same rank) for each image | |
text_ids_neg = [] | |
text_atts_neg = [] | |
for b in range(bs): | |
neg_idx = torch.multinomial(weights_i2t[b], 1).item() | |
text_ids_neg.append(encoder_input_ids[neg_idx]) | |
text_atts_neg.append(text.attention_mask[neg_idx]) | |
text_ids_neg = torch.stack(text_ids_neg,dim=0) | |
text_atts_neg = torch.stack(text_atts_neg,dim=0) | |
text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0) | |
text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0) | |
image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0) | |
image_atts_all = torch.cat([image_atts,image_atts],dim=0) | |
output_neg = self.text_encoder(text_ids_all, | |
attention_mask = text_atts_all, | |
encoder_hidden_states = image_embeds_all, | |
encoder_attention_mask = image_atts_all, | |
return_dict = True, | |
) | |
vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0) | |
vl_output = self.itm_head(vl_embeddings) | |
itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)], | |
dim=0).to(image.device) | |
loss_itm = F.cross_entropy(vl_output, itm_labels) | |
return loss_ita, loss_itm | |
def copy_params(self): | |
for model_pair in self.model_pairs: | |
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()): | |
param_m.data.copy_(param.data) # initialize | |
param_m.requires_grad = False # not update by gradient | |
def _momentum_update(self): | |
for model_pair in self.model_pairs: | |
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()): | |
param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum) | |
def _dequeue_and_enqueue(self, image_feat, text_feat, idxs): | |
# gather keys before updating queue | |
image_feats = concat_all_gather(image_feat) | |
text_feats = concat_all_gather(text_feat) | |
batch_size = image_feats.shape[0] | |
ptr = int(self.ptr_queue) | |
assert self.queue_size % batch_size == 0 # for simplicity | |
# replace the keys at ptr (dequeue and enqueue) | |
self.image_queue[:, ptr:ptr + batch_size] = image_feats.T | |
self.text_queue[:, ptr:ptr + batch_size] = text_feats.T | |
self.idx_queue[:, ptr:ptr + batch_size] = idxs.T | |
ptr = (ptr + batch_size) % self.queue_size # move pointer | |
self.ptr_queue[0] = ptr | |
def blip_retrieval(pretrained='',**kwargs): | |
model = BLIP_Retrieval(**kwargs) | |
if pretrained: | |
model,msg = load_checkpoint(model,pretrained) | |
print("missing keys:") | |
print(msg.missing_keys) | |
return model | |
def concat_all_gather(tensor): | |
""" | |
Performs all_gather operation on the provided tensors. | |
*** Warning ***: torch.distributed.all_gather has no gradient. | |
""" | |
tensors_gather = [torch.ones_like(tensor) | |
for _ in range(torch.distributed.get_world_size())] | |
torch.distributed.all_gather(tensors_gather, tensor, async_op=False) | |
output = torch.cat(tensors_gather, dim=0) | |
return output | |
class GatherLayer(torch.autograd.Function): | |
""" | |
Gather tensors from all workers with support for backward propagation: | |
This implementation does not cut the gradients as torch.distributed.all_gather does. | |
""" | |
def forward(ctx, x): | |
output = [torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())] | |
torch.distributed.all_gather(output, x) | |
return tuple(output) | |
def backward(ctx, *grads): | |
all_gradients = torch.stack(grads) | |
torch.distributed.all_reduce(all_gradients) | |
return all_gradients[torch.distributed.get_rank()] | |
def all_gather_with_grad(tensors): | |
""" | |
Performs all_gather operation on the provided tensors. | |
Graph remains connected for backward grad computation. | |
""" | |
# Queue the gathered tensors | |
world_size = torch.distributed.get_world_size() | |
# There is no need for reduction in the single-proc case | |
if world_size == 1: | |
return tensors | |
tensor_all = GatherLayer.apply(tensors) | |
return torch.cat(tensor_all, dim=0) | |