File size: 13,759 Bytes
f317192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from models.med import BertConfig, BertModel
from transformers import BertTokenizer

import torch
from torch import nn
import torch.nn.functional as F

from models.blip import create_vit, init_tokenizer, load_checkpoint

class BLIP_Retrieval(nn.Module):
    def __init__(self,                 
                 med_config = 'configs/med_config.json',  
                 image_size = 384,
                 vit = 'base',
                 vit_grad_ckpt = False,
                 vit_ckpt_layer = 0,                      
                 embed_dim = 256,     
                 queue_size = 57600,
                 momentum = 0.995,
                 negative_all_rank = False,
                 ):
        """
        Args:
            med_config (str): path for the mixture of encoder-decoder model's configuration file
            image_size (int): input image size
            vit (str): model size of vision transformer
        """               
        super().__init__()
        
        self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
        self.tokenizer = init_tokenizer()   
        med_config = BertConfig.from_json_file(med_config)
        med_config.encoder_width = vision_width
        self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)          

        text_width = self.text_encoder.config.hidden_size
        
        self.vision_proj = nn.Linear(vision_width, embed_dim)
        self.text_proj = nn.Linear(text_width, embed_dim)

        self.itm_head = nn.Linear(text_width, 2) 
        
        # create momentum encoders  
        self.visual_encoder_m, vision_width = create_vit(vit,image_size)              
        self.vision_proj_m = nn.Linear(vision_width, embed_dim)
        self.text_encoder_m = BertModel(config=med_config, add_pooling_layer=False)    
        self.text_proj_m = nn.Linear(text_width, embed_dim)
        
        self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
                            [self.vision_proj,self.vision_proj_m],
                            [self.text_encoder,self.text_encoder_m],
                            [self.text_proj,self.text_proj_m],
                           ]       
        self.copy_params()

        # create the queue
        self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
        self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
        self.register_buffer("idx_queue", torch.full((1,queue_size),-100))
        self.register_buffer("ptr_queue", torch.zeros(1, dtype=torch.long))  

        self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
        self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
        
        self.queue_size = queue_size
        self.momentum = momentum
        self.temp = nn.Parameter(0.07*torch.ones([]))   
        
        self.negative_all_rank = negative_all_rank
        
        
    def forward(self, image, caption, alpha, idx):
        with torch.no_grad():
            self.temp.clamp_(0.001,0.5)
        
        image_embeds = self.visual_encoder(image) 
        image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)        
        image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)    
        
        text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35, 
                              return_tensors="pt").to(image.device) 
        
        text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,                      
                                        return_dict = True, mode = 'text')            
        text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)        
        
        ###============== Image-text Contrastive Learning ===================###
        idx = idx.view(-1,1)
        idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()],dim=1)  
        pos_idx = torch.eq(idx, idx_all).float()       
        sim_targets = pos_idx / pos_idx.sum(1,keepdim=True)   
        
        # get momentum features
        with torch.no_grad():
            self._momentum_update()
            image_embeds_m = self.visual_encoder_m(image) 
            image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)  
            image_feat_m_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)                   
            
            text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,                      
                                                return_dict = True, mode = 'text')    
            text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1) 
            text_feat_m_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)

            sim_i2t_m = image_feat_m @ text_feat_m_all / self.temp  
            sim_t2i_m = text_feat_m @ image_feat_m_all / self.temp   

            sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
            sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets        

        sim_i2t = image_feat @ text_feat_m_all / self.temp 
        sim_t2i = text_feat @ image_feat_m_all / self.temp 
                             
        loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
        loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean() 

        loss_ita = (loss_i2t+loss_t2i)/2
        
        idxs = concat_all_gather(idx)
        self._dequeue_and_enqueue(image_feat_m, text_feat_m, idxs)        

        ###============== Image-text Matching ===================###
        encoder_input_ids = text.input_ids.clone()
        encoder_input_ids[:,0] = self.tokenizer.enc_token_id

        # forward the positve image-text pair
        bs = image.size(0)
        output_pos = self.text_encoder(encoder_input_ids,
                                       attention_mask = text.attention_mask,
                                       encoder_hidden_states = image_embeds,
                                       encoder_attention_mask = image_atts,      
                                       return_dict = True,
                                      )  
        
        
        if self.negative_all_rank:    
            # compute sample similarity
            with torch.no_grad():                
                mask = torch.eq(idx, idxs.t())

                image_feat_world = concat_all_gather(image_feat)
                text_feat_world = concat_all_gather(text_feat)

                sim_i2t = image_feat @ text_feat_world.t() / self.temp 
                sim_t2i = text_feat @ image_feat_world.t() / self.temp 

                weights_i2t = F.softmax(sim_i2t,dim=1)
                weights_i2t.masked_fill_(mask, 0)            

                weights_t2i = F.softmax(sim_t2i,dim=1)
                weights_t2i.masked_fill_(mask, 0)     

            image_embeds_world = all_gather_with_grad(image_embeds) 

            # select a negative image (from all ranks) for each text
            image_embeds_neg = []    
            for b in range(bs):
                neg_idx = torch.multinomial(weights_t2i[b], 1).item()
                image_embeds_neg.append(image_embeds_world[neg_idx])
            image_embeds_neg = torch.stack(image_embeds_neg,dim=0)   

            # select a negative text (from all ranks) for each image
            input_ids_world = concat_all_gather(encoder_input_ids)
            att_mask_world = concat_all_gather(text.attention_mask)        

            text_ids_neg = []
            text_atts_neg = []
            for b in range(bs):
                neg_idx = torch.multinomial(weights_i2t[b], 1).item()
                text_ids_neg.append(input_ids_world[neg_idx])
                text_atts_neg.append(att_mask_world[neg_idx])
                
        else:
            with torch.no_grad():                
                mask = torch.eq(idx, idx.t())
                
                sim_i2t = image_feat @ text_feat.t() / self.temp 
                sim_t2i = text_feat @ image_feat.t() / self.temp 

                weights_i2t = F.softmax(sim_i2t,dim=1)
                weights_i2t.masked_fill_(mask, 0)            

                weights_t2i = F.softmax(sim_t2i,dim=1)
                weights_t2i.masked_fill_(mask, 0)     

            # select a negative image (from same rank) for each text
            image_embeds_neg = []    
            for b in range(bs):
                neg_idx = torch.multinomial(weights_t2i[b], 1).item()
                image_embeds_neg.append(image_embeds[neg_idx])
            image_embeds_neg = torch.stack(image_embeds_neg,dim=0)   

            # select a negative text (from same rank) for each image    
            text_ids_neg = []
            text_atts_neg = []
            for b in range(bs):
                neg_idx = torch.multinomial(weights_i2t[b], 1).item()
                text_ids_neg.append(encoder_input_ids[neg_idx])
                text_atts_neg.append(text.attention_mask[neg_idx])            
            
        text_ids_neg = torch.stack(text_ids_neg,dim=0)   
        text_atts_neg = torch.stack(text_atts_neg,dim=0)      

        text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)     
        text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)     

        image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
        image_atts_all = torch.cat([image_atts,image_atts],dim=0)

        output_neg = self.text_encoder(text_ids_all,
                                       attention_mask = text_atts_all,
                                       encoder_hidden_states = image_embeds_all,
                                       encoder_attention_mask = image_atts_all,      
                                       return_dict = True,
                                      )                         
          

        vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
        vl_output = self.itm_head(vl_embeddings)            

        itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
                               dim=0).to(image.device)
        loss_itm = F.cross_entropy(vl_output, itm_labels)     

        return loss_ita, loss_itm 
 

    @torch.no_grad()    
    def copy_params(self):
        for model_pair in self.model_pairs:           
            for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
                param_m.data.copy_(param.data)  # initialize
                param_m.requires_grad = False  # not update by gradient    

            
    @torch.no_grad()        
    def _momentum_update(self):
        for model_pair in self.model_pairs:           
            for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
                param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
                
                
    @torch.no_grad()
    def _dequeue_and_enqueue(self, image_feat, text_feat, idxs):
        # gather keys before updating queue
        image_feats = concat_all_gather(image_feat)
        text_feats = concat_all_gather(text_feat)
        

        batch_size = image_feats.shape[0]

        ptr = int(self.ptr_queue)
        assert self.queue_size % batch_size == 0  # for simplicity

        # replace the keys at ptr (dequeue and enqueue)
        self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
        self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
        self.idx_queue[:, ptr:ptr + batch_size] = idxs.T
        ptr = (ptr + batch_size) % self.queue_size # move pointer

        self.ptr_queue[0] = ptr  


def blip_retrieval(pretrained='',**kwargs):
    model = BLIP_Retrieval(**kwargs)
    if pretrained:
        model,msg = load_checkpoint(model,pretrained)
        print("missing keys:")
        print(msg.missing_keys)
    return model 


@torch.no_grad()
def concat_all_gather(tensor):
    """
    Performs all_gather operation on the provided tensors.
    *** Warning ***: torch.distributed.all_gather has no gradient.
    """
    tensors_gather = [torch.ones_like(tensor)
        for _ in range(torch.distributed.get_world_size())]
    torch.distributed.all_gather(tensors_gather, tensor, async_op=False)

    output = torch.cat(tensors_gather, dim=0)
    return output      


class GatherLayer(torch.autograd.Function):
    """
    Gather tensors from all workers with support for backward propagation:
    This implementation does not cut the gradients as torch.distributed.all_gather does.
    """

    @staticmethod
    def forward(ctx, x):
        output = [torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())]
        torch.distributed.all_gather(output, x)
        return tuple(output)

    @staticmethod
    def backward(ctx, *grads):
        all_gradients = torch.stack(grads)
        torch.distributed.all_reduce(all_gradients)
        return all_gradients[torch.distributed.get_rank()]


def all_gather_with_grad(tensors):
    """
    Performs all_gather operation on the provided tensors.
    Graph remains connected for backward grad computation.
    """
    # Queue the gathered tensors
    world_size = torch.distributed.get_world_size()
    # There is no need for reduction in the single-proc case
    if world_size == 1:
        return tensors

    tensor_all = GatherLayer.apply(tensors)

    return torch.cat(tensor_all, dim=0)