annikwag's picture
Update app.py
08da20e verified
raw
history blame
18.8 kB
import streamlit as st
import requests
import pandas as pd
from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year, extract_year
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import load_region_data, get_country_name, get_regions
from appStore.tfidf_extraction import extract_top_keywords
from torch import cuda
import json
from datetime import datetime
#model_config = getconfig("model_params.cfg")
###########
# ToDo move to functions
# Configuration for the dedicated model
DEDICATED_MODEL = "meta-llama/Llama-3.1-8B-Instruct"
DEDICATED_ENDPOINT = "https://qu2d8m6dmsollhly.us-east-1.aws.endpoints.huggingface.cloud"
# Write access token from the settings
WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"]
def get_rag_answer(query, top_results):
"""
Constructs a prompt from the query and the page contexts of the top results,
then sends it to the dedicated endpoint and returns the generated answer.
"""
# Combine the context from the top results (you may adjust the separator as needed)
context = "\n\n".join([res.payload["page_content"] for res in top_results])
# Create a prompt: you can refine the instructions to better suit your needs.
prompt = (
f"Using the following context, answer the question concisely.\n\n"
f"Context:\n{context}\n\n"
f"Question: {query}\n\n"
f"Answer:"
)
headers = {"Authorization": f"Bearer {WRITE_ACCESS_TOKEN}"}
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 150 # Adjust max tokens as needed
}
}
response = requests.post(DEDICATED_ENDPOINT, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
# Depending on the endpoint's response structure, adjust how you extract the generated text.
answer = result[0]["generated_text"]
return answer.strip()
else:
return f"Error in generating answer: {response.text}"
#######
# get the device to be used eithe gpu or cpu
device = 'cuda' if cuda.is_available() else 'cpu'
st.set_page_config(page_title="SEARCH IATI",layout='wide')
st.title("GIZ Project Database (PROTOTYPE)")
var = st.text_input("Enter Search Query")
# Load the region lookup CSV
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)
#################### Create the embeddings collection and save ######################
# the steps below need to be performed only once and then commented out any unnecssary compute over-run
##### First we process and create the chunks for relvant data source
#chunks = process_giz_worldwide()
##### Convert to langchain documents
#temp_doc = create_documents(chunks,'chunks')
##### Embed and store docs, check if collection exist then you need to update the collection
collection_name = "giz_worldwide"
#hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True)
################### Hybrid Search #####################################################
client = get_client()
print(client.get_collections())
# Get the maximum end_year across the entire collection
max_end_year = get_max_end_year(client, collection_name)
# Get all unique sub-regions
_, unique_sub_regions = get_regions(region_df)
# Fetch unique country codes and map to country names
@st.cache_data
def get_country_name_and_region_mapping(_client, collection_name, region_df):
results = hybrid_search(_client, "", collection_name)
country_set = set()
for res in results[0] + results[1]:
countries = res.payload.get('metadata', {}).get('countries', "[]")
try:
country_list = json.loads(countries.replace("'", '"'))
# Only add codes of length 2
two_digit_codes = [code.upper() for code in country_list if len(code) == 2]
country_set.update(two_digit_codes)
except json.JSONDecodeError:
pass
# Create a mapping of {CountryName -> ISO2Code} and {ISO2Code -> SubRegion}
country_name_to_code = {}
iso_code_to_sub_region = {}
for code in country_set:
name = get_country_name(code, region_df)
sub_region_row = region_df[region_df['alpha-2'] == code]
sub_region = sub_region_row['sub-region'].values[0] if not sub_region_row.empty else "Not allocated"
country_name_to_code[name] = code
iso_code_to_sub_region[code] = sub_region
return country_name_to_code, iso_code_to_sub_region
# Get country name and region mappings
client = get_client()
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(client, collection_name, region_df)
unique_country_names = sorted(country_name_mapping.keys()) # List of country names
# Layout filters in columns
col1, col2, col3, col4 = st.columns([1, 1, 1, 4])
# Region filter
with col1:
region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions)) # Display region names
# Dynamically filter countries based on selected region
if region_filter == "All/Not allocated":
filtered_country_names = unique_country_names # Show all countries if no region is selected
else:
filtered_country_names = [
name for name, code in country_name_mapping.items() if iso_code_to_sub_region.get(code) == region_filter
]
# Country filter
with col2:
country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names) # Display filtered country names
# Year range slider # ToDo add end_year filter again
with col3:
current_year = datetime.now().year
default_start_year = current_year - 5
# 3) The max_value is now the actual max end_year from collection
end_year_range = st.slider(
"Project End Year",
min_value=2010,
max_value=max_end_year,
value=(default_start_year, max_end_year),
)
# Checkbox to control whether to show only exact matches
show_exact_matches = st.checkbox("Show only exact matches", value=False)
def filter_results(results, country_filter, region_filter, end_year_range): ## ToDo add end_year filter again
filtered = []
for r in results:
metadata = r.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
year_str = metadata.get('end_year')
if year_str:
extracted = extract_year(year_str)
try:
end_year_val = int(extracted) if extracted != "Unknown" else 0
except ValueError:
end_year_val = 0
else:
end_year_val = 0
# Convert countries to a list
try:
c_list = json.loads(countries.replace("'", '"'))
c_list = [code.upper() for code in c_list if len(code) == 2]
except json.JSONDecodeError:
c_list = []
# Translate selected country name to iso2
selected_iso_code = country_name_mapping.get(country_filter, None)
# Check if any country in the metadata matches the selected region
if region_filter != "All/Not allocated":
countries_in_region = [code for code in c_list if iso_code_to_sub_region.get(code) == region_filter]
else:
countries_in_region = c_list
# Filtering
if (
(country_filter == "All/Not allocated" or selected_iso_code in c_list)
and (region_filter == "All/Not allocated" or countries_in_region)
and (end_year_range[0] <= end_year_val <= end_year_range[1]) # ToDo add end_year filter again
):
filtered.append(r)
return filtered
# Run the search
# 1) Adjust limit so we get more than 15 results
results = hybrid_search(client, var, collection_name, limit=500) # e.g., 100 or 200
# results is a tuple: (semantic_results, lexical_results)
semantic_all = results[0]
lexical_all = results[1]
# 2) Filter out content < 20 chars (as intermediate fix to problem that e.g. super short paragraphs with few chars get high similarity score)
semantic_all = [
r for r in semantic_all if len(r.payload["page_content"]) >= 5
]
lexical_all = [
r for r in lexical_all if len(r.payload["page_content"]) >= 5
]
# 2) Apply a threshold to SEMANTIC results (score >= 0.4)
semantic_thresholded = [r for r in semantic_all if r.score >= 0.0]
# 2) Filter the entire sets
filtered_semantic = filter_results(semantic_thresholded, country_filter, region_filter, end_year_range) ## ToDo add end_year filter again
filtered_lexical = filter_results(lexical_all, country_filter, region_filter, end_year_range)## ToDo add end_year filter again
filtered_semantic_no_dupe = remove_duplicates(filtered_semantic) # ToDo remove duplicates again?
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
# Define a helper function to format currency values
def format_currency(value):
try:
# Convert to float then int for formatting (assumes whole numbers)
return f"€{int(float(value)):,}"
except (ValueError, TypeError):
return value
# 3) Retrieve top 15 *after* filtering
# Check user preference
if show_exact_matches:
# 1) Display heading
st.write(f"Showing **Top 15 Lexical Search results** for query: {var}")
# 2) Do a simple substring check (case-insensitive)
# We'll create a new list lexical_substring_filtered
query_substring = var.strip().lower()
lexical_substring_filtered = []
for r in lexical_all:
# page_content in lowercase
page_text_lower = r.payload["page_content"].lower()
# Keep this result only if the query substring is found
if query_substring in page_text_lower:
lexical_substring_filtered.append(r)
# 3) Now apply your region/country/year filter on that new list
filtered_lexical = filter_results(
lexical_substring_filtered, country_filter, region_filter, end_year_range
) ## ToDo add end_year filter again
# 4) Remove duplicates
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
# 5) If empty after substring + filters + dedupe, show a custom message
if not filtered_lexical_no_dupe:
st.write('No exact matches, consider unchecking "Show only exact matches"')
else:
top_results = filtered_lexical_no_dupe[:2]
rag_answer = get_rag_answer(var, top_results)
st.markdown("### Generated Answer")
st.write(rag_answer)
st.divider()
for res in top_results:
# Metadata
metadata = res.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
client_name = metadata.get('client', 'Unknown Client')
start_year = metadata.get('start_year', None)
end_year = metadata.get('end_year', None)
total_volume = metadata.get('total_volume', "Unknown")
total_project = metadata.get('total_project', "Unknown")
id = metadata.get('id', "Unknown")
project_name = res.payload['metadata'].get('project_name', 'Project Link')
proj_id = metadata.get('id', 'Unknown')
st.markdown(f"#### {project_name} [{proj_id}]")
# Snippet logic (80 words)
# Build snippet from objectives and descriptions.
objectives = metadata.get("objectives", "")
desc_de = metadata.get("description.de", "")
desc_en = metadata.get("description.en", "")
description = desc_de if desc_de else desc_en
full_snippet = f"Objective: {objectives} Description: {description}"
words = full_snippet.split()
preview_word_count = 200
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
st.write(preview_text + ("..." if remainder_text else ""))
# Keywords
full_text = res.payload['page_content']
top_keywords = extract_top_keywords(full_text, top_n=5)
if top_keywords:
st.markdown(f"_{' · '.join(top_keywords)}_")
try:
c_list = json.loads(countries.replace("'", '"'))
except json.JSONDecodeError:
c_list = []
# Only keep country names if the region lookup returns a different value.
matched_countries = []
for code in c_list:
if len(code) == 2:
resolved_name = get_country_name(code.upper(), region_df)
if resolved_name.upper() != code.upper():
matched_countries.append(resolved_name)
# Format the year range
start_year_str = extract_year(start_year) if start_year else "Unknown"
end_year_str = extract_year(end_year) if end_year else "Unknown"
formatted_project_budget = format_currency(total_project)
formatted_total_volume = format_currency(total_volume)
# Build the final string including a new row for countries.
if matched_countries:
additional_text = (
f"**{', '.join(matched_countries)}**, commissioned by **{client_name}**\n"
f"Projekt duration **{start_year_str}-{end_year_str}**\n"
f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n"
f"Country: **{', '.join(matched_countries)}**"
)
else:
additional_text = (
f"Commissioned by **{client_name}**\n"
f"Projekt duration **{start_year_str}-{end_year_str}**\n"
f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n"
f"Country: **{', '.join(c_list) if c_list else 'Unknown'}**"
)
st.markdown(additional_text)
st.divider()
else:
st.write(f"Showing **Top 15 Semantic Search results** for query: {var}")
if not filtered_semantic_no_dupe:
st.write("No relevant results found.")
else:
# Get the top 15 results for the RAG context
top_results = filtered_semantic_no_dupe[:2]
# Call the RAG function to generate an answer
rag_answer = get_rag_answer(var, top_results)
# Display the generated answer at the top of the page
st.markdown("### Generated Answer")
st.write(rag_answer)
st.divider()
# Now list each individual search result below
for res in top_results:
# Metadata
metadata = res.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
client_name = metadata.get('client', 'Unknown Client')
start_year = metadata.get('start_year', None)
end_year = metadata.get('end_year', None)
total_volume = metadata.get('total_volume', "Unknown")
total_project = metadata.get('total_project', "Unknown")
id = metadata.get('id', "Unknown")
project_name = res.payload['metadata'].get('project_name', 'Project Link')
proj_id = metadata.get('id', 'Unknown')
st.markdown(f"#### {project_name} [{proj_id}]")
# Snippet logic (80 words)
# Build snippet from objectives and descriptions.
objectives = metadata.get("objectives", "")
desc_de = metadata.get("description.de", "")
desc_en = metadata.get("description.en", "")
description = desc_de if desc_de else desc_en
full_snippet = f"Objective: {objectives} Description: {description}"
words = full_snippet.split()
preview_word_count = 200
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
st.write(preview_text + ("..." if remainder_text else ""))
# Keywords
full_text = res.payload['page_content']
top_keywords = extract_top_keywords(full_text, top_n=5)
if top_keywords:
st.markdown(f"_{' · '.join(top_keywords)}_")
try:
c_list = json.loads(countries.replace("'", '"'))
except json.JSONDecodeError:
c_list = []
matched_countries = []
for code in c_list:
if len(code) == 2:
resolved_name = get_country_name(code.upper(), region_df)
if resolved_name.upper() != code.upper():
matched_countries.append(resolved_name)
# Format the year range
start_year_str = extract_year(start_year) if start_year else "Unknown"
end_year_str = extract_year(end_year) if end_year else "Unknown"
formatted_project_budget = format_currency(total_project)
formatted_total_volume = format_currency(total_volume)
# Build the final string
if matched_countries:
additional_text = (
f"**{', '.join(matched_countries)}**, commissioned by **{client_name}**\n"
f"Projekt duration **{start_year_str}-{end_year_str}**\n"
f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n"
f"Country: **{', '.join(matched_countries)}**"
)
else:
additional_text = (
f"Commissioned by **{client_name}**\n"
f"Projekt duration **{start_year_str}-{end_year_str}**\n"
f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n"
f"Country: **{', '.join(c_list) if c_list else 'Unknown'}**"
)
st.markdown(additional_text)
st.divider()
# for i in results:
# st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
# st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
# st.write(i.page_content)
# st.divider()