File size: 18,782 Bytes
0130713
1bfcfd5
c2f0c5c
c258cbb
5a1352d
 
c567921
8fdd4c1
8225c93
cb359de
9d9ace2
53d69f4
 
08da20e
 
 
1bfcfd5
5fc3c7d
08da20e
 
 
 
 
1bfcfd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47177b9
f5dac9b
0130713
47177b9
 
3346614
d845358
e4b8dd5
88e2023
 
 
 
9392032
47177b9
 
7da963b
47177b9
7da963b
47177b9
c567921
7da963b
5170600
b08d54a
5a1352d
 
d845358
48484fb
 
 
8fdd4c1
 
 
17d08d8
d845358
8fdd4c1
d845358
 
5ee7936
d845358
 
 
 
8fdd4c1
043c4b1
 
d845358
 
8fdd4c1
 
043c4b1
8fdd4c1
 
043c4b1
 
8fdd4c1
 
043c4b1
8fdd4c1
043c4b1
8fdd4c1
d845358
8fdd4c1
88e2023
8fdd4c1
17d08d8
d845358
 
5620c68
d845358
6c2d0be
d845358
47177b9
6c2d0be
 
 
47177b9
6c2d0be
 
 
 
 
 
d845358
47177b9
 
77a1d81
 
 
 
 
 
 
 
 
 
 
 
d845358
 
 
 
77a1d81
59e8a6b
 
 
 
e90b042
 
 
 
 
 
 
 
 
59e8a6b
 
 
 
 
 
 
 
 
 
 
8fdd4c1
 
 
 
 
 
47177b9
59e8a6b
 
8fdd4c1
77a1d81
59e8a6b
 
 
 
d9b0f82
47177b9
 
 
 
 
d6bab54
 
 
47177b9
 
5ee7936
47177b9
 
5ee7936
47177b9
d6bab54
47177b9
5ee7936
d6bab54
47177b9
77a1d81
 
d6bab54
5ee7936
d6bab54
 
a5158de
 
 
 
 
 
 
d6bab54
47177b9
 
d6bab54
47177b9
d6bab54
 
47177b9
 
d6bab54
 
 
47177b9
 
 
 
d6bab54
 
47177b9
 
77a1d81
 
47177b9
 
82254d1
 
47177b9
d6bab54
 
 
a71f6f1
5fc3c7d
 
 
 
 
67f6d38
 
 
 
 
 
 
 
 
47177b9
a5158de
 
47177b9
 
a5158de
 
 
 
 
 
 
5ee7936
47177b9
 
 
 
 
a5158de
d6bab54
 
 
 
47177b9
 
 
 
 
 
f7d0726
47177b9
 
 
 
 
 
 
 
a5158de
 
47177b9
a5158de
 
 
f7d0726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6bab54
 
82254d1
d6bab54
 
529dce6
d6bab54
 
d845358
1bfcfd5
a71f6f1
1bfcfd5
 
 
 
 
 
 
 
 
 
 
77a1d81
 
 
 
 
 
 
 
 
47177b9
77a1d81
 
d6bab54
77a1d81
 
 
 
 
 
 
 
 
47177b9
 
 
 
 
77a1d81
d6bab54
 
 
47177b9
 
 
 
 
 
 
 
 
 
 
 
 
 
c258cbb
 
77a1d81
 
 
 
47177b9
 
 
 
f7d0726
77a1d81
 
 
f7d0726
 
 
47177b9
 
 
77a1d81
 
 
 
f7d0726
 
 
47177b9
5ee7936
d6bab54
 
d845358
47177b9
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import streamlit as st
import requests
import pandas as pd
from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year, extract_year
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import load_region_data, get_country_name, get_regions
from appStore.tfidf_extraction import extract_top_keywords 
from torch import cuda
import json
from datetime import datetime



#model_config = getconfig("model_params.cfg")
###########
# ToDo move to functions
# Configuration for the dedicated model
DEDICATED_MODEL = "meta-llama/Llama-3.1-8B-Instruct"
DEDICATED_ENDPOINT = "https://qu2d8m6dmsollhly.us-east-1.aws.endpoints.huggingface.cloud"
# Write access token from the settings
WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"]

def get_rag_answer(query, top_results):
    """
    Constructs a prompt from the query and the page contexts of the top results,
    then sends it to the dedicated endpoint and returns the generated answer.
    """
    # Combine the context from the top results (you may adjust the separator as needed)
    context = "\n\n".join([res.payload["page_content"] for res in top_results])
    
    # Create a prompt: you can refine the instructions to better suit your needs.
    prompt = (
        f"Using the following context, answer the question concisely.\n\n"
        f"Context:\n{context}\n\n"
        f"Question: {query}\n\n"
        f"Answer:"
    )
    
    headers = {"Authorization": f"Bearer {WRITE_ACCESS_TOKEN}"}
    payload = {
        "inputs": prompt,
        "parameters": {
            "max_new_tokens": 150  # Adjust max tokens as needed
        }
    }
    
    response = requests.post(DEDICATED_ENDPOINT, headers=headers, json=payload)
    if response.status_code == 200:
        result = response.json()
        # Depending on the endpoint's response structure, adjust how you extract the generated text.
        answer = result[0]["generated_text"]
        return answer.strip()
    else:
        return f"Error in generating answer: {response.text}"

#######

# get the device to be used eithe gpu or cpu
device = 'cuda' if cuda.is_available() else 'cpu'


st.set_page_config(page_title="SEARCH IATI",layout='wide')
st.title("GIZ Project Database (PROTOTYPE)")
var = st.text_input("Enter Search Query")

# Load the region lookup CSV
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)

####################  Create the embeddings collection and save ######################
# the steps below need to be performed only once and then commented out any unnecssary compute over-run
##### First we process and create the chunks for relvant data source
#chunks = process_giz_worldwide()
##### Convert to langchain documents
#temp_doc = create_documents(chunks,'chunks')
##### Embed and store docs, check if collection exist then you need to update the collection
collection_name = "giz_worldwide"
#hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True)

################### Hybrid Search #####################################################
client = get_client()
print(client.get_collections())

# Get the maximum end_year across the entire collection
max_end_year = get_max_end_year(client, collection_name)

# Get all unique sub-regions
_, unique_sub_regions = get_regions(region_df)

# Fetch unique country codes and map to country names
@st.cache_data
def get_country_name_and_region_mapping(_client, collection_name, region_df):
    results = hybrid_search(_client, "", collection_name)
    country_set = set()
    
    for res in results[0] + results[1]:
        countries = res.payload.get('metadata', {}).get('countries', "[]")
        try:
            country_list = json.loads(countries.replace("'", '"'))
            # Only add codes of length 2
            two_digit_codes = [code.upper() for code in country_list if len(code) == 2]
            country_set.update(two_digit_codes)
        except json.JSONDecodeError:
            pass

    # Create a mapping of {CountryName -> ISO2Code} and {ISO2Code -> SubRegion}
    country_name_to_code = {}
    iso_code_to_sub_region = {}

    for code in country_set:
        name = get_country_name(code, region_df)
        sub_region_row = region_df[region_df['alpha-2'] == code]
        sub_region = sub_region_row['sub-region'].values[0] if not sub_region_row.empty else "Not allocated"
        country_name_to_code[name] = code
        iso_code_to_sub_region[code] = sub_region

    return country_name_to_code, iso_code_to_sub_region

# Get country name and region mappings
client = get_client()
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(client, collection_name, region_df)
unique_country_names = sorted(country_name_mapping.keys())  # List of country names

# Layout filters in columns
col1, col2, col3, col4 = st.columns([1, 1, 1, 4])

# Region filter
with col1:
    region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions))  # Display region names

# Dynamically filter countries based on selected region
if region_filter == "All/Not allocated":
    filtered_country_names = unique_country_names  # Show all countries if no region is selected
else:
    filtered_country_names = [
        name for name, code in country_name_mapping.items() if iso_code_to_sub_region.get(code) == region_filter
    ]

# Country filter
with col2:
    country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names)  # Display filtered country names

# Year range slider # ToDo add end_year filter again
with col3:
    current_year = datetime.now().year
    default_start_year = current_year - 5

    # 3) The max_value is now the actual max end_year from collection
    end_year_range = st.slider(
        "Project End Year",
        min_value=2010,
        max_value=max_end_year,
        value=(default_start_year, max_end_year),
    )

# Checkbox to control whether to show only exact matches
show_exact_matches = st.checkbox("Show only exact matches", value=False)

def filter_results(results, country_filter, region_filter, end_year_range): ##  ToDo add end_year filter again
    filtered = []
    for r in results:
        metadata = r.payload.get('metadata', {})
        countries = metadata.get('countries', "[]")
        year_str = metadata.get('end_year')
        if year_str:
            extracted = extract_year(year_str)
            try:
                end_year_val = int(extracted) if extracted != "Unknown" else 0
            except ValueError:
                end_year_val = 0
        else:
            end_year_val = 0

        # Convert countries to a list
        try:
            c_list = json.loads(countries.replace("'", '"'))
            c_list = [code.upper() for code in c_list if len(code) == 2]
        except json.JSONDecodeError:
            c_list = []

        # Translate selected country name to iso2
        selected_iso_code = country_name_mapping.get(country_filter, None)

        # Check if any country in the metadata matches the selected region
        if region_filter != "All/Not allocated":
            countries_in_region = [code for code in c_list if iso_code_to_sub_region.get(code) == region_filter]
        else:
            countries_in_region = c_list

        # Filtering
        if (
            (country_filter == "All/Not allocated" or selected_iso_code in c_list)
            and (region_filter == "All/Not allocated" or countries_in_region)
            and (end_year_range[0] <= end_year_val <= end_year_range[1]) # ToDo add end_year filter again
        ):
            filtered.append(r)
    return filtered

# Run the search 

# 1) Adjust limit so we get more than 15 results
results = hybrid_search(client, var, collection_name, limit=500)  # e.g., 100 or 200

# results is a tuple: (semantic_results, lexical_results)
semantic_all = results[0]
lexical_all = results[1]

# 2) Filter out content < 20 chars (as intermediate fix to problem that e.g. super short paragraphs with few chars get high similarity score)
semantic_all = [
    r for r in semantic_all if len(r.payload["page_content"]) >= 5
]
lexical_all = [
    r for r in lexical_all if len(r.payload["page_content"]) >= 5
]

# 2) Apply a threshold to SEMANTIC results (score >= 0.4)
semantic_thresholded = [r for r in semantic_all if r.score >= 0.0]

# 2) Filter the entire sets
filtered_semantic = filter_results(semantic_thresholded, country_filter, region_filter, end_year_range) ##  ToDo add end_year filter again
filtered_lexical = filter_results(lexical_all, country_filter, region_filter, end_year_range)## ToDo add end_year filter again

filtered_semantic_no_dupe = remove_duplicates(filtered_semantic) # ToDo remove duplicates again?
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)

# Define a helper function to format currency values
def format_currency(value):
    try:
        # Convert to float then int for formatting (assumes whole numbers)
        return f"€{int(float(value)):,}"
    except (ValueError, TypeError):
        return value

# 3) Retrieve top 15 *after* filtering
# Check user preference
if show_exact_matches:
    # 1) Display heading
    st.write(f"Showing **Top 15 Lexical Search results** for query: {var}")

    # 2) Do a simple substring check (case-insensitive)
    #    We'll create a new list lexical_substring_filtered
    query_substring = var.strip().lower()
    lexical_substring_filtered = []
    for r in lexical_all:
        # page_content in lowercase
        page_text_lower = r.payload["page_content"].lower()
        # Keep this result only if the query substring is found
        if query_substring in page_text_lower:
            lexical_substring_filtered.append(r)

    # 3) Now apply your region/country/year filter on that new list
    filtered_lexical = filter_results(
        lexical_substring_filtered, country_filter, region_filter, end_year_range
    ) ## ToDo add end_year filter again

    # 4) Remove duplicates
    filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)

    # 5) If empty after substring + filters + dedupe, show a custom message
    if not filtered_lexical_no_dupe:
        st.write('No exact matches, consider unchecking "Show only exact matches"')
    else:
        top_results = filtered_lexical_no_dupe[:2]
        rag_answer = get_rag_answer(var, top_results)
        st.markdown("### Generated Answer")
        st.write(rag_answer)
        st.divider()
        for res in top_results:
            # Metadata
            metadata = res.payload.get('metadata', {})
            countries = metadata.get('countries', "[]")
            client_name = metadata.get('client', 'Unknown Client')
            start_year = metadata.get('start_year', None)
            end_year = metadata.get('end_year', None)
            total_volume = metadata.get('total_volume', "Unknown")
            total_project = metadata.get('total_project', "Unknown")
            id = metadata.get('id', "Unknown")
            project_name = res.payload['metadata'].get('project_name', 'Project Link')
            proj_id = metadata.get('id', 'Unknown')
            st.markdown(f"#### {project_name} [{proj_id}]")

            # Snippet logic (80 words)
            # Build snippet from objectives and descriptions.
            objectives = metadata.get("objectives", "")
            desc_de = metadata.get("description.de", "")
            desc_en = metadata.get("description.en", "")
            description = desc_de if desc_de else desc_en
            full_snippet = f"Objective: {objectives} Description: {description}"
            words = full_snippet.split()
            preview_word_count = 200
            preview_text = " ".join(words[:preview_word_count])
            remainder_text = " ".join(words[preview_word_count:])
            st.write(preview_text + ("..." if remainder_text else ""))

            # Keywords
            full_text = res.payload['page_content']
            top_keywords = extract_top_keywords(full_text, top_n=5)
            if top_keywords:
                st.markdown(f"_{' · '.join(top_keywords)}_")

            
            try:
                c_list = json.loads(countries.replace("'", '"'))
            except json.JSONDecodeError:
                c_list = []
            
            # Only keep country names if the region lookup returns a different value.
            matched_countries = []
            for code in c_list:
                if len(code) == 2:
                    resolved_name = get_country_name(code.upper(), region_df)
                    if resolved_name.upper() != code.upper():
                        matched_countries.append(resolved_name)
            
            # Format the year range
            start_year_str = extract_year(start_year) if start_year else "Unknown"
            end_year_str = extract_year(end_year) if end_year else "Unknown"
            
            formatted_project_budget = format_currency(total_project)
            formatted_total_volume = format_currency(total_volume)

            # Build the final string including a new row for countries.
            if matched_countries:
                additional_text = (
                    f"**{', '.join(matched_countries)}**, commissioned by **{client_name}**\n"
                    
                    f"Projekt duration **{start_year_str}-{end_year_str}**\n"
                    
                    f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n"
                    
                    f"Country: **{', '.join(matched_countries)}**"
                )
            else:
                additional_text = (
                    f"Commissioned by **{client_name}**\n"
                    
                    f"Projekt duration **{start_year_str}-{end_year_str}**\n"
                    
                    f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n"
                    
                    f"Country: **{', '.join(c_list) if c_list else 'Unknown'}**"
                )
            st.markdown(additional_text)
            st.divider()

else:
    st.write(f"Showing **Top 15 Semantic Search results** for query: {var}")
    
    if not filtered_semantic_no_dupe:
        st.write("No relevant results found.")
    else:
        # Get the top 15 results for the RAG context
        top_results = filtered_semantic_no_dupe[:2]
        
        # Call the RAG function to generate an answer
        rag_answer = get_rag_answer(var, top_results)
        
        # Display the generated answer at the top of the page
        st.markdown("### Generated Answer")
        st.write(rag_answer)
        st.divider()
        
        # Now list each individual search result below
        for res in top_results:
            # Metadata
            metadata = res.payload.get('metadata', {})
            countries = metadata.get('countries', "[]")
            client_name = metadata.get('client', 'Unknown Client')
            start_year = metadata.get('start_year', None)
            end_year = metadata.get('end_year', None)
            total_volume = metadata.get('total_volume', "Unknown")
            total_project = metadata.get('total_project', "Unknown")
            id = metadata.get('id', "Unknown")
            project_name = res.payload['metadata'].get('project_name', 'Project Link')
            proj_id = metadata.get('id', 'Unknown')
            st.markdown(f"#### {project_name} [{proj_id}]")

            # Snippet logic (80 words)
            # Build snippet from objectives and descriptions.
            objectives = metadata.get("objectives", "")
            desc_de = metadata.get("description.de", "")
            desc_en = metadata.get("description.en", "")
            description = desc_de if desc_de else desc_en
            full_snippet = f"Objective: {objectives} Description: {description}"
            words = full_snippet.split()
            preview_word_count = 200
            preview_text = " ".join(words[:preview_word_count])
            remainder_text = " ".join(words[preview_word_count:])
            st.write(preview_text + ("..." if remainder_text else ""))

            # Keywords
            full_text = res.payload['page_content']
            top_keywords = extract_top_keywords(full_text, top_n=5)
            if top_keywords:
                st.markdown(f"_{' · '.join(top_keywords)}_")
            
            try:
                c_list = json.loads(countries.replace("'", '"'))
            except json.JSONDecodeError:
                c_list = []
            
            matched_countries = []
            for code in c_list:
                if len(code) == 2:
                    resolved_name = get_country_name(code.upper(), region_df)
                    if resolved_name.upper() != code.upper():
                        matched_countries.append(resolved_name)
            
            # Format the year range
            start_year_str = extract_year(start_year) if start_year else "Unknown"
            end_year_str = extract_year(end_year) if end_year else "Unknown"

            formatted_project_budget = format_currency(total_project)
            formatted_total_volume = format_currency(total_volume)

            
            # Build the final string
            if matched_countries:
                additional_text = (
                    f"**{', '.join(matched_countries)}**, commissioned by **{client_name}**\n"
                    
                    f"Projekt duration **{start_year_str}-{end_year_str}**\n"
                    
                    f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n"
                    
                    f"Country: **{', '.join(matched_countries)}**"
                )
            else:
                additional_text = (
                    f"Commissioned by **{client_name}**\n"
                    
                    f"Projekt duration **{start_year_str}-{end_year_str}**\n"
                    
                    f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n"
                    
                    f"Country: **{', '.join(c_list) if c_list else 'Unknown'}**"
                )

            st.markdown(additional_text)
            st.divider()


    #  for i in results: 
    #      st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
    #      st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
    #      st.write(i.page_content)
    #      st.divider()