Spaces:
Sleeping
Sleeping
File size: 18,782 Bytes
0130713 1bfcfd5 c2f0c5c c258cbb 5a1352d c567921 8fdd4c1 8225c93 cb359de 9d9ace2 53d69f4 08da20e 1bfcfd5 5fc3c7d 08da20e 1bfcfd5 47177b9 f5dac9b 0130713 47177b9 3346614 d845358 e4b8dd5 88e2023 9392032 47177b9 7da963b 47177b9 7da963b 47177b9 c567921 7da963b 5170600 b08d54a 5a1352d d845358 48484fb 8fdd4c1 17d08d8 d845358 8fdd4c1 d845358 5ee7936 d845358 8fdd4c1 043c4b1 d845358 8fdd4c1 043c4b1 8fdd4c1 043c4b1 8fdd4c1 043c4b1 8fdd4c1 043c4b1 8fdd4c1 d845358 8fdd4c1 88e2023 8fdd4c1 17d08d8 d845358 5620c68 d845358 6c2d0be d845358 47177b9 6c2d0be 47177b9 6c2d0be d845358 47177b9 77a1d81 d845358 77a1d81 59e8a6b e90b042 59e8a6b 8fdd4c1 47177b9 59e8a6b 8fdd4c1 77a1d81 59e8a6b d9b0f82 47177b9 d6bab54 47177b9 5ee7936 47177b9 5ee7936 47177b9 d6bab54 47177b9 5ee7936 d6bab54 47177b9 77a1d81 d6bab54 5ee7936 d6bab54 a5158de d6bab54 47177b9 d6bab54 47177b9 d6bab54 47177b9 d6bab54 47177b9 d6bab54 47177b9 77a1d81 47177b9 82254d1 47177b9 d6bab54 a71f6f1 5fc3c7d 67f6d38 47177b9 a5158de 47177b9 a5158de 5ee7936 47177b9 a5158de d6bab54 47177b9 f7d0726 47177b9 a5158de 47177b9 a5158de f7d0726 d6bab54 82254d1 d6bab54 529dce6 d6bab54 d845358 1bfcfd5 a71f6f1 1bfcfd5 77a1d81 47177b9 77a1d81 d6bab54 77a1d81 47177b9 77a1d81 d6bab54 47177b9 c258cbb 77a1d81 47177b9 f7d0726 77a1d81 f7d0726 47177b9 77a1d81 f7d0726 47177b9 5ee7936 d6bab54 d845358 47177b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import streamlit as st
import requests
import pandas as pd
from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year, extract_year
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import load_region_data, get_country_name, get_regions
from appStore.tfidf_extraction import extract_top_keywords
from torch import cuda
import json
from datetime import datetime
#model_config = getconfig("model_params.cfg")
###########
# ToDo move to functions
# Configuration for the dedicated model
DEDICATED_MODEL = "meta-llama/Llama-3.1-8B-Instruct"
DEDICATED_ENDPOINT = "https://qu2d8m6dmsollhly.us-east-1.aws.endpoints.huggingface.cloud"
# Write access token from the settings
WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"]
def get_rag_answer(query, top_results):
"""
Constructs a prompt from the query and the page contexts of the top results,
then sends it to the dedicated endpoint and returns the generated answer.
"""
# Combine the context from the top results (you may adjust the separator as needed)
context = "\n\n".join([res.payload["page_content"] for res in top_results])
# Create a prompt: you can refine the instructions to better suit your needs.
prompt = (
f"Using the following context, answer the question concisely.\n\n"
f"Context:\n{context}\n\n"
f"Question: {query}\n\n"
f"Answer:"
)
headers = {"Authorization": f"Bearer {WRITE_ACCESS_TOKEN}"}
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 150 # Adjust max tokens as needed
}
}
response = requests.post(DEDICATED_ENDPOINT, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
# Depending on the endpoint's response structure, adjust how you extract the generated text.
answer = result[0]["generated_text"]
return answer.strip()
else:
return f"Error in generating answer: {response.text}"
#######
# get the device to be used eithe gpu or cpu
device = 'cuda' if cuda.is_available() else 'cpu'
st.set_page_config(page_title="SEARCH IATI",layout='wide')
st.title("GIZ Project Database (PROTOTYPE)")
var = st.text_input("Enter Search Query")
# Load the region lookup CSV
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)
#################### Create the embeddings collection and save ######################
# the steps below need to be performed only once and then commented out any unnecssary compute over-run
##### First we process and create the chunks for relvant data source
#chunks = process_giz_worldwide()
##### Convert to langchain documents
#temp_doc = create_documents(chunks,'chunks')
##### Embed and store docs, check if collection exist then you need to update the collection
collection_name = "giz_worldwide"
#hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True)
################### Hybrid Search #####################################################
client = get_client()
print(client.get_collections())
# Get the maximum end_year across the entire collection
max_end_year = get_max_end_year(client, collection_name)
# Get all unique sub-regions
_, unique_sub_regions = get_regions(region_df)
# Fetch unique country codes and map to country names
@st.cache_data
def get_country_name_and_region_mapping(_client, collection_name, region_df):
results = hybrid_search(_client, "", collection_name)
country_set = set()
for res in results[0] + results[1]:
countries = res.payload.get('metadata', {}).get('countries', "[]")
try:
country_list = json.loads(countries.replace("'", '"'))
# Only add codes of length 2
two_digit_codes = [code.upper() for code in country_list if len(code) == 2]
country_set.update(two_digit_codes)
except json.JSONDecodeError:
pass
# Create a mapping of {CountryName -> ISO2Code} and {ISO2Code -> SubRegion}
country_name_to_code = {}
iso_code_to_sub_region = {}
for code in country_set:
name = get_country_name(code, region_df)
sub_region_row = region_df[region_df['alpha-2'] == code]
sub_region = sub_region_row['sub-region'].values[0] if not sub_region_row.empty else "Not allocated"
country_name_to_code[name] = code
iso_code_to_sub_region[code] = sub_region
return country_name_to_code, iso_code_to_sub_region
# Get country name and region mappings
client = get_client()
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(client, collection_name, region_df)
unique_country_names = sorted(country_name_mapping.keys()) # List of country names
# Layout filters in columns
col1, col2, col3, col4 = st.columns([1, 1, 1, 4])
# Region filter
with col1:
region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions)) # Display region names
# Dynamically filter countries based on selected region
if region_filter == "All/Not allocated":
filtered_country_names = unique_country_names # Show all countries if no region is selected
else:
filtered_country_names = [
name for name, code in country_name_mapping.items() if iso_code_to_sub_region.get(code) == region_filter
]
# Country filter
with col2:
country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names) # Display filtered country names
# Year range slider # ToDo add end_year filter again
with col3:
current_year = datetime.now().year
default_start_year = current_year - 5
# 3) The max_value is now the actual max end_year from collection
end_year_range = st.slider(
"Project End Year",
min_value=2010,
max_value=max_end_year,
value=(default_start_year, max_end_year),
)
# Checkbox to control whether to show only exact matches
show_exact_matches = st.checkbox("Show only exact matches", value=False)
def filter_results(results, country_filter, region_filter, end_year_range): ## ToDo add end_year filter again
filtered = []
for r in results:
metadata = r.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
year_str = metadata.get('end_year')
if year_str:
extracted = extract_year(year_str)
try:
end_year_val = int(extracted) if extracted != "Unknown" else 0
except ValueError:
end_year_val = 0
else:
end_year_val = 0
# Convert countries to a list
try:
c_list = json.loads(countries.replace("'", '"'))
c_list = [code.upper() for code in c_list if len(code) == 2]
except json.JSONDecodeError:
c_list = []
# Translate selected country name to iso2
selected_iso_code = country_name_mapping.get(country_filter, None)
# Check if any country in the metadata matches the selected region
if region_filter != "All/Not allocated":
countries_in_region = [code for code in c_list if iso_code_to_sub_region.get(code) == region_filter]
else:
countries_in_region = c_list
# Filtering
if (
(country_filter == "All/Not allocated" or selected_iso_code in c_list)
and (region_filter == "All/Not allocated" or countries_in_region)
and (end_year_range[0] <= end_year_val <= end_year_range[1]) # ToDo add end_year filter again
):
filtered.append(r)
return filtered
# Run the search
# 1) Adjust limit so we get more than 15 results
results = hybrid_search(client, var, collection_name, limit=500) # e.g., 100 or 200
# results is a tuple: (semantic_results, lexical_results)
semantic_all = results[0]
lexical_all = results[1]
# 2) Filter out content < 20 chars (as intermediate fix to problem that e.g. super short paragraphs with few chars get high similarity score)
semantic_all = [
r for r in semantic_all if len(r.payload["page_content"]) >= 5
]
lexical_all = [
r for r in lexical_all if len(r.payload["page_content"]) >= 5
]
# 2) Apply a threshold to SEMANTIC results (score >= 0.4)
semantic_thresholded = [r for r in semantic_all if r.score >= 0.0]
# 2) Filter the entire sets
filtered_semantic = filter_results(semantic_thresholded, country_filter, region_filter, end_year_range) ## ToDo add end_year filter again
filtered_lexical = filter_results(lexical_all, country_filter, region_filter, end_year_range)## ToDo add end_year filter again
filtered_semantic_no_dupe = remove_duplicates(filtered_semantic) # ToDo remove duplicates again?
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
# Define a helper function to format currency values
def format_currency(value):
try:
# Convert to float then int for formatting (assumes whole numbers)
return f"€{int(float(value)):,}"
except (ValueError, TypeError):
return value
# 3) Retrieve top 15 *after* filtering
# Check user preference
if show_exact_matches:
# 1) Display heading
st.write(f"Showing **Top 15 Lexical Search results** for query: {var}")
# 2) Do a simple substring check (case-insensitive)
# We'll create a new list lexical_substring_filtered
query_substring = var.strip().lower()
lexical_substring_filtered = []
for r in lexical_all:
# page_content in lowercase
page_text_lower = r.payload["page_content"].lower()
# Keep this result only if the query substring is found
if query_substring in page_text_lower:
lexical_substring_filtered.append(r)
# 3) Now apply your region/country/year filter on that new list
filtered_lexical = filter_results(
lexical_substring_filtered, country_filter, region_filter, end_year_range
) ## ToDo add end_year filter again
# 4) Remove duplicates
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
# 5) If empty after substring + filters + dedupe, show a custom message
if not filtered_lexical_no_dupe:
st.write('No exact matches, consider unchecking "Show only exact matches"')
else:
top_results = filtered_lexical_no_dupe[:2]
rag_answer = get_rag_answer(var, top_results)
st.markdown("### Generated Answer")
st.write(rag_answer)
st.divider()
for res in top_results:
# Metadata
metadata = res.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
client_name = metadata.get('client', 'Unknown Client')
start_year = metadata.get('start_year', None)
end_year = metadata.get('end_year', None)
total_volume = metadata.get('total_volume', "Unknown")
total_project = metadata.get('total_project', "Unknown")
id = metadata.get('id', "Unknown")
project_name = res.payload['metadata'].get('project_name', 'Project Link')
proj_id = metadata.get('id', 'Unknown')
st.markdown(f"#### {project_name} [{proj_id}]")
# Snippet logic (80 words)
# Build snippet from objectives and descriptions.
objectives = metadata.get("objectives", "")
desc_de = metadata.get("description.de", "")
desc_en = metadata.get("description.en", "")
description = desc_de if desc_de else desc_en
full_snippet = f"Objective: {objectives} Description: {description}"
words = full_snippet.split()
preview_word_count = 200
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
st.write(preview_text + ("..." if remainder_text else ""))
# Keywords
full_text = res.payload['page_content']
top_keywords = extract_top_keywords(full_text, top_n=5)
if top_keywords:
st.markdown(f"_{' · '.join(top_keywords)}_")
try:
c_list = json.loads(countries.replace("'", '"'))
except json.JSONDecodeError:
c_list = []
# Only keep country names if the region lookup returns a different value.
matched_countries = []
for code in c_list:
if len(code) == 2:
resolved_name = get_country_name(code.upper(), region_df)
if resolved_name.upper() != code.upper():
matched_countries.append(resolved_name)
# Format the year range
start_year_str = extract_year(start_year) if start_year else "Unknown"
end_year_str = extract_year(end_year) if end_year else "Unknown"
formatted_project_budget = format_currency(total_project)
formatted_total_volume = format_currency(total_volume)
# Build the final string including a new row for countries.
if matched_countries:
additional_text = (
f"**{', '.join(matched_countries)}**, commissioned by **{client_name}**\n"
f"Projekt duration **{start_year_str}-{end_year_str}**\n"
f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n"
f"Country: **{', '.join(matched_countries)}**"
)
else:
additional_text = (
f"Commissioned by **{client_name}**\n"
f"Projekt duration **{start_year_str}-{end_year_str}**\n"
f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n"
f"Country: **{', '.join(c_list) if c_list else 'Unknown'}**"
)
st.markdown(additional_text)
st.divider()
else:
st.write(f"Showing **Top 15 Semantic Search results** for query: {var}")
if not filtered_semantic_no_dupe:
st.write("No relevant results found.")
else:
# Get the top 15 results for the RAG context
top_results = filtered_semantic_no_dupe[:2]
# Call the RAG function to generate an answer
rag_answer = get_rag_answer(var, top_results)
# Display the generated answer at the top of the page
st.markdown("### Generated Answer")
st.write(rag_answer)
st.divider()
# Now list each individual search result below
for res in top_results:
# Metadata
metadata = res.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
client_name = metadata.get('client', 'Unknown Client')
start_year = metadata.get('start_year', None)
end_year = metadata.get('end_year', None)
total_volume = metadata.get('total_volume', "Unknown")
total_project = metadata.get('total_project', "Unknown")
id = metadata.get('id', "Unknown")
project_name = res.payload['metadata'].get('project_name', 'Project Link')
proj_id = metadata.get('id', 'Unknown')
st.markdown(f"#### {project_name} [{proj_id}]")
# Snippet logic (80 words)
# Build snippet from objectives and descriptions.
objectives = metadata.get("objectives", "")
desc_de = metadata.get("description.de", "")
desc_en = metadata.get("description.en", "")
description = desc_de if desc_de else desc_en
full_snippet = f"Objective: {objectives} Description: {description}"
words = full_snippet.split()
preview_word_count = 200
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
st.write(preview_text + ("..." if remainder_text else ""))
# Keywords
full_text = res.payload['page_content']
top_keywords = extract_top_keywords(full_text, top_n=5)
if top_keywords:
st.markdown(f"_{' · '.join(top_keywords)}_")
try:
c_list = json.loads(countries.replace("'", '"'))
except json.JSONDecodeError:
c_list = []
matched_countries = []
for code in c_list:
if len(code) == 2:
resolved_name = get_country_name(code.upper(), region_df)
if resolved_name.upper() != code.upper():
matched_countries.append(resolved_name)
# Format the year range
start_year_str = extract_year(start_year) if start_year else "Unknown"
end_year_str = extract_year(end_year) if end_year else "Unknown"
formatted_project_budget = format_currency(total_project)
formatted_total_volume = format_currency(total_volume)
# Build the final string
if matched_countries:
additional_text = (
f"**{', '.join(matched_countries)}**, commissioned by **{client_name}**\n"
f"Projekt duration **{start_year_str}-{end_year_str}**\n"
f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n"
f"Country: **{', '.join(matched_countries)}**"
)
else:
additional_text = (
f"Commissioned by **{client_name}**\n"
f"Projekt duration **{start_year_str}-{end_year_str}**\n"
f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n"
f"Country: **{', '.join(c_list) if c_list else 'Unknown'}**"
)
st.markdown(additional_text)
st.divider()
# for i in results:
# st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
# st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
# st.write(i.page_content)
# st.divider() |