Futuresony commited on
Commit
c17e36f
ยท
verified ยท
1 Parent(s): dfc785e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -76
app.py CHANGED
@@ -1,83 +1,14 @@
1
- import gradio as gr
2
- import os
3
- import json
4
  import faiss
5
  import numpy as np
6
- import torch
7
- from sentence_transformers import SentenceTransformer
8
- from huggingface_hub import InferenceClient, hf_hub_download
9
 
10
- # ๐Ÿ”น Hugging Face Credentials
11
- HF_REPO = "Futuresony/future_ai_12_10_2024.gguf"
12
- HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') # Ensure this is set in your environment
13
-
14
- # ๐Ÿ”น FAISS Index Path
15
  FAISS_PATH = "asa_faiss.index"
 
16
 
17
- # ๐Ÿ”น Load Sentence Transformer for Embeddings
18
- embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
19
-
20
- # ๐Ÿ”น Load FAISS Index from Hugging Face
21
- faiss_local_path = hf_hub_download(HF_REPO, "asa_faiss.index", token=HF_TOKEN)
22
- faiss_index = faiss.read_index(faiss_local_path)
23
-
24
- # ๐Ÿ”น Initialize Hugging Face Model Client
25
- client = InferenceClient(model=HF_REPO, token=HF_TOKEN)
26
-
27
- # ๐Ÿ”น Retrieve Relevant FAISS Data
28
- def retrieve_faiss_knowledge(user_query, top_k=3):
29
- query_embedding = embedder.encode([user_query], convert_to_tensor=True).cpu().numpy()
30
- distances, indices = faiss_index.search(query_embedding, top_k)
31
-
32
- retrieved_texts = []
33
- for idx in indices[0]: # Extract top_k results
34
- if idx != -1: # Ensure valid index
35
- retrieved_texts.append(f"Example {idx}: (Extracted FAISS Data)")
36
-
37
- return "\n".join(retrieved_texts) if retrieved_texts else "**No relevant FAISS data found.**"
38
-
39
- # ๐Ÿ”น Chatbot Response Function (Forcing FAISS Context)
40
- def respond(message, history, system_message, max_tokens, temperature, top_p):
41
- faiss_context = retrieve_faiss_knowledge(message)
42
-
43
- # ๐Ÿ”ฅ Force the model to use FAISS
44
- full_prompt = f"""### System Instruction:
45
- You MUST use the provided FAISS data to generate your response.
46
- If no FAISS data is found, return "I don't have enough information."
47
-
48
- ### Retrieved FAISS Data:
49
- {faiss_context}
50
-
51
- ### User Query:
52
- {message}
53
-
54
- ### Response:
55
- """
56
-
57
- response = client.text_generation(
58
- full_prompt,
59
- max_new_tokens=max_tokens,
60
- temperature=temperature,
61
- top_p=top_p,
62
- )
63
-
64
- # โœ… Extract only the model-generated response
65
- cleaned_response = response.split("### Response:")[-1].strip()
66
-
67
- history.append((message, cleaned_response)) # โœ… Update chat history
68
-
69
- yield cleaned_response # โœ… Output the response
70
 
71
- # ๐Ÿ”น Gradio Chat Interface
72
- demo = gr.ChatInterface(
73
- respond,
74
- additional_inputs=[
75
- gr.Textbox(value="You are a knowledge assistant that must use FAISS context.", label="System message"),
76
- gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"),
77
- gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"),
78
- gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"),
79
- ],
80
- )
81
 
82
- if __name__ == "__main__":
83
- demo.launch()
 
 
 
 
1
  import faiss
2
  import numpy as np
 
 
 
3
 
4
+ # Load FAISS index
 
 
 
 
5
  FAISS_PATH = "asa_faiss.index"
6
+ index = faiss.read_index(FAISS_PATH)
7
 
8
+ # Example query vector (random, replace with actual embedding from your model)
9
+ query_vector = np.random.rand(1, index.d).astype('float32')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ # Search FAISS index
12
+ D, I = index.search(query_vector, k=1) # k=1 means get 1 nearest neighbor
 
 
 
 
 
 
 
 
13
 
14
+ print(f"Closest match index: {I[0][0]}, Distance: {D[0][0]}")