Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,83 +1,14 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import os
|
3 |
-
import json
|
4 |
import faiss
|
5 |
import numpy as np
|
6 |
-
import torch
|
7 |
-
from sentence_transformers import SentenceTransformer
|
8 |
-
from huggingface_hub import InferenceClient, hf_hub_download
|
9 |
|
10 |
-
#
|
11 |
-
HF_REPO = "Futuresony/future_ai_12_10_2024.gguf"
|
12 |
-
HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') # Ensure this is set in your environment
|
13 |
-
|
14 |
-
# ๐น FAISS Index Path
|
15 |
FAISS_PATH = "asa_faiss.index"
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
# ๐น Load FAISS Index from Hugging Face
|
21 |
-
faiss_local_path = hf_hub_download(HF_REPO, "asa_faiss.index", token=HF_TOKEN)
|
22 |
-
faiss_index = faiss.read_index(faiss_local_path)
|
23 |
-
|
24 |
-
# ๐น Initialize Hugging Face Model Client
|
25 |
-
client = InferenceClient(model=HF_REPO, token=HF_TOKEN)
|
26 |
-
|
27 |
-
# ๐น Retrieve Relevant FAISS Data
|
28 |
-
def retrieve_faiss_knowledge(user_query, top_k=3):
|
29 |
-
query_embedding = embedder.encode([user_query], convert_to_tensor=True).cpu().numpy()
|
30 |
-
distances, indices = faiss_index.search(query_embedding, top_k)
|
31 |
-
|
32 |
-
retrieved_texts = []
|
33 |
-
for idx in indices[0]: # Extract top_k results
|
34 |
-
if idx != -1: # Ensure valid index
|
35 |
-
retrieved_texts.append(f"Example {idx}: (Extracted FAISS Data)")
|
36 |
-
|
37 |
-
return "\n".join(retrieved_texts) if retrieved_texts else "**No relevant FAISS data found.**"
|
38 |
-
|
39 |
-
# ๐น Chatbot Response Function (Forcing FAISS Context)
|
40 |
-
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
41 |
-
faiss_context = retrieve_faiss_knowledge(message)
|
42 |
-
|
43 |
-
# ๐ฅ Force the model to use FAISS
|
44 |
-
full_prompt = f"""### System Instruction:
|
45 |
-
You MUST use the provided FAISS data to generate your response.
|
46 |
-
If no FAISS data is found, return "I don't have enough information."
|
47 |
-
|
48 |
-
### Retrieved FAISS Data:
|
49 |
-
{faiss_context}
|
50 |
-
|
51 |
-
### User Query:
|
52 |
-
{message}
|
53 |
-
|
54 |
-
### Response:
|
55 |
-
"""
|
56 |
-
|
57 |
-
response = client.text_generation(
|
58 |
-
full_prompt,
|
59 |
-
max_new_tokens=max_tokens,
|
60 |
-
temperature=temperature,
|
61 |
-
top_p=top_p,
|
62 |
-
)
|
63 |
-
|
64 |
-
# โ
Extract only the model-generated response
|
65 |
-
cleaned_response = response.split("### Response:")[-1].strip()
|
66 |
-
|
67 |
-
history.append((message, cleaned_response)) # โ
Update chat history
|
68 |
-
|
69 |
-
yield cleaned_response # โ
Output the response
|
70 |
|
71 |
-
#
|
72 |
-
|
73 |
-
respond,
|
74 |
-
additional_inputs=[
|
75 |
-
gr.Textbox(value="You are a knowledge assistant that must use FAISS context.", label="System message"),
|
76 |
-
gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"),
|
77 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"),
|
78 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"),
|
79 |
-
],
|
80 |
-
)
|
81 |
|
82 |
-
|
83 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
1 |
import faiss
|
2 |
import numpy as np
|
|
|
|
|
|
|
3 |
|
4 |
+
# Load FAISS index
|
|
|
|
|
|
|
|
|
5 |
FAISS_PATH = "asa_faiss.index"
|
6 |
+
index = faiss.read_index(FAISS_PATH)
|
7 |
|
8 |
+
# Example query vector (random, replace with actual embedding from your model)
|
9 |
+
query_vector = np.random.rand(1, index.d).astype('float32')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Search FAISS index
|
12 |
+
D, I = index.search(query_vector, k=1) # k=1 means get 1 nearest neighbor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
print(f"Closest match index: {I[0][0]}, Distance: {D[0][0]}")
|
|