Futuresony commited on
Commit
dfc785e
Β·
verified Β·
1 Parent(s): 3faca7e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -11
app.py CHANGED
@@ -1,15 +1,83 @@
1
- import faiss
2
  import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- # πŸ”Ή Define FAISS File Path
5
- FAISS_FILE = "asa_faiss.index" # This should be inside your space files
6
- LOCAL_FAISS_PATH = os.path.join(os.getcwd(), FAISS_FILE)
7
 
8
- # πŸ”Ή Check if FAISS File Exists
9
- if not os.path.exists(LOCAL_FAISS_PATH):
10
- raise FileNotFoundError(f"❌ FAISS index file '{FAISS_FILE}' not found! Make sure it's uploaded to your Space.")
 
 
 
 
 
 
 
11
 
12
- # πŸ”Ή Load FAISS Index
13
- print(f"Loading FAISS index from {LOCAL_FAISS_PATH}...")
14
- faiss_index = faiss.read_index(LOCAL_FAISS_PATH)
15
- print("βœ… FAISS index loaded successfully!")
 
1
+ import gradio as gr
2
  import os
3
+ import json
4
+ import faiss
5
+ import numpy as np
6
+ import torch
7
+ from sentence_transformers import SentenceTransformer
8
+ from huggingface_hub import InferenceClient, hf_hub_download
9
+
10
+ # πŸ”Ή Hugging Face Credentials
11
+ HF_REPO = "Futuresony/future_ai_12_10_2024.gguf"
12
+ HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') # Ensure this is set in your environment
13
+
14
+ # πŸ”Ή FAISS Index Path
15
+ FAISS_PATH = "asa_faiss.index"
16
+
17
+ # πŸ”Ή Load Sentence Transformer for Embeddings
18
+ embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
19
+
20
+ # πŸ”Ή Load FAISS Index from Hugging Face
21
+ faiss_local_path = hf_hub_download(HF_REPO, "asa_faiss.index", token=HF_TOKEN)
22
+ faiss_index = faiss.read_index(faiss_local_path)
23
+
24
+ # πŸ”Ή Initialize Hugging Face Model Client
25
+ client = InferenceClient(model=HF_REPO, token=HF_TOKEN)
26
+
27
+ # πŸ”Ή Retrieve Relevant FAISS Data
28
+ def retrieve_faiss_knowledge(user_query, top_k=3):
29
+ query_embedding = embedder.encode([user_query], convert_to_tensor=True).cpu().numpy()
30
+ distances, indices = faiss_index.search(query_embedding, top_k)
31
+
32
+ retrieved_texts = []
33
+ for idx in indices[0]: # Extract top_k results
34
+ if idx != -1: # Ensure valid index
35
+ retrieved_texts.append(f"Example {idx}: (Extracted FAISS Data)")
36
+
37
+ return "\n".join(retrieved_texts) if retrieved_texts else "**No relevant FAISS data found.**"
38
+
39
+ # πŸ”Ή Chatbot Response Function (Forcing FAISS Context)
40
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
41
+ faiss_context = retrieve_faiss_knowledge(message)
42
+
43
+ # πŸ”₯ Force the model to use FAISS
44
+ full_prompt = f"""### System Instruction:
45
+ You MUST use the provided FAISS data to generate your response.
46
+ If no FAISS data is found, return "I don't have enough information."
47
+
48
+ ### Retrieved FAISS Data:
49
+ {faiss_context}
50
+
51
+ ### User Query:
52
+ {message}
53
+
54
+ ### Response:
55
+ """
56
+
57
+ response = client.text_generation(
58
+ full_prompt,
59
+ max_new_tokens=max_tokens,
60
+ temperature=temperature,
61
+ top_p=top_p,
62
+ )
63
+
64
+ # βœ… Extract only the model-generated response
65
+ cleaned_response = response.split("### Response:")[-1].strip()
66
+
67
+ history.append((message, cleaned_response)) # βœ… Update chat history
68
 
69
+ yield cleaned_response # βœ… Output the response
 
 
70
 
71
+ # πŸ”Ή Gradio Chat Interface
72
+ demo = gr.ChatInterface(
73
+ respond,
74
+ additional_inputs=[
75
+ gr.Textbox(value="You are a knowledge assistant that must use FAISS context.", label="System message"),
76
+ gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"),
77
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"),
78
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"),
79
+ ],
80
+ )
81
 
82
+ if __name__ == "__main__":
83
+ demo.launch()